
TReMer: A Tool for Relationship-Driven Model
Merging

Mehrdad Sabetzadeh and Shiva Nejati

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada.

Email: {mehrdad,shiva}@cs.toronto.edu

1 Introduction
Model management is a crucial activity in large-scale software development where de-
velopment tasks are often distributed over different teams. To support flexible, coordi-
nated work, these teams need to maintain partial models of the overall system, and un-
derstand the relationships between these models. Models of a proposed system may be
manipulated in various ways, and the results of these manipulations may be used by an-
alysts to evolve the models. Model management aims to keep track of the relationships
between a set of models as they evolve, and to describe the manipulations performed
over them in terms of a set of predefined operators. Bernstein [2] identifies a number
of useful operators on models, including Match, for finding correspondences between
models, Diff, for finding differences between models, and Merge, for combining a set
of models. Easterbrook et al. [3] extend these with several complementary operators
including Slice, for producing a projection of a model based on a given criterion, and
Split, for retrieving the models involved in building a composite one.

In conventional approaches to software development, models and programs are
treated as textual artifacts and are managed via version control systems, supported
by a number of relatively simple textual operations, including cut and paste, and text
based differencing. In model-driven software development [12], artifacts are expressed
in well-defined notations, such as those comprising UML. The richer semantic basis of
these notations gives rise to more sophisticated model operations, and hence a greater
management challenge.

In this extended abstract, we describe a tool, TReMer, for performing the merge
operation in a model-driven development setting. Merge is arguably one of the most
important model management operations and is useful as a way of consolidating a set
of models to gain a unified perspective, to understand their interactions, or to perform
various types of end-to-end analysis over them.

TReMer draws on the theory developed in our earlier work [8, 9, 13, 6, 3] where we
describe how a set of models can be merged w.r.t. known or hypothesized relationships
between them. We treat model relationships as explicit artifacts. This treatment offers
two major advantages: Firstly, it makes our tool adaptable to different modelling do-
mains. In particular, as we will argue in the next section, explicit relationships make
it possible to provide a unified merge framework for both structural and behavioural
modelling domains. Secondly, explicit relationships facilitate the exploration of merge
alternatives by allowing users to articulate each alternative in a precise way.



A notable feature of TReMer is its ability to handle models that may be incomplete
and inconsistent. Due to lack of space, we do not discuss this feature here, and instead,
refer the reader to our previous work [11, 10] where a detailed exposition of the subject
has been provided.

2 Tool Overview
Fig. 1 shows an overview of the methodology employed in TReMer for model merg-
ing. Given a set of models, the tool allows users to graphically explore and identify the
relationships between them. The input models and their relationships are supplied to
the merge component which in turn generates a merged model by applying a domain-
specific merge algorithm. The merged model is then presented to the user for further
analyses. These analyses may lead to the discovery of new relationships or the invali-
dation of some of the existing ones. The user may then start a new iteration by revising
their merge hypothesis (or creating a new hypothesis) and following the subsequent
activities.

Fig. 1. Overview of the merge process.

As suggested by Fig. 1, our tool consists of two main parts: (1) a front-end that
allows users to explore and specify relationships between models; and (2) a library of
merge algorithms. Our current merge library supports two general classes of models:
structural, e.g., Entity-Relationship (ER) models, and behavioural, e.g., state-machine
models. The key factor that allows us to unify merging of these two seemingly different
classes of models is the treatment of relationships as first class objects. Such treatment
makes it possible to define an abstract unified interface for the merge process. Each
domain-specific merge algorithm is then implemented as a plugin conforming to this
unified interface.

To capture relationships between structural models, we use submodels, also referred
to as connectors [9]. Connectors, which are usually specified by domain experts, de-
scribe the common parts between a set of models. Our structural merging algorithm is
based on a category-theoretic concept called colimit [1]. Colimits provide a very high-
level and yet powerful machinery for merging [5]. Intuitively, computing the colimit
yields a new model combining all models w.r.t. their correspondences as described by a
set of given relationships. Several examples on merging structural models are available
in [9, 8, 11].

In behavioural modelling, a relationship is specified as a binary relation between the
states of the input models. The behavioural merging algorithm for a pair of models is de-
fined as their common refinement [13, 6]. Common refinement captures the “more com-
plete than” relation between behavioural model pairs and has proven to be a suitable no-
tion for defining behavioural merges. In order to compute a common refinement of two

2



state machines, we first need a relationship between the states of the two models. Such
a relationship effectively allows us to describe the correspondences between the two
models and compute their merge accordingly. Relationships between state-machines
can be computed automatically when input models are behaviourally consistent, or can
be provided by domain experts, otherwise. For examples of behavioural merging, the
reader can refer to [13, 6, 4].

For future versions of the tool, we plan to carry out a systematic study of the do-
mains where model merging plays an important role, and use the results of this study
to build a more comprehensive library of merge algorithms. Further, we plan to extend
our work to other model management operators discussed in [3]. A major part of our
ongoing research in this direction is focused on the Match operator which provides
semi-automated assistance for finding model relationships. Some initial work in this
direction has been reported in [7].
Acknowledgment. We thank Marsha Chechik and Steve Easterbrook for their help and
support throughout this work.
References
1. M. Barr and C. Wells. “Category Theory for Computing Science”. Les Publications CRM

Montréal, Montreal, Canada, 3rd edition, 1999.
2. P. Bernstein. “Applying Model Management to Classical Meta Data Problems”. In Proceed-

ings of the 1st Biennial Conference on Innovative Data Systems Research, pages 209–220,
2003.

3. G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh. A manifesto
for model merging. In Wkshp. on Global Integrated Model Management (GaMMa), 2006.

4. G. Brunet, M. Chechik, and S. Uchitel. Properties of behavioural model merging. In Pro-
ceedings of Formal Methods (FM’06), 2006. To appear.

5. J. Goguen. “A Categorical Manifesto”. Mathematical Structures in Computer Science,
1(1):49–67, 1991.

6. S. Nejati and M. Chechik. “Let’s Agree to Disagree”. In Proceedings of 20th IEEE Interna-
tional Conference on Automated Software Engineering (ASE’05), pages 287 – 290, 2005.

7. S. Nejati, M. Sabetzadeh, M. Chechik, and S. Easterbrook. “Identifying and Representing
Requirements Variability in Families of Reactive Software”. University of Toronto, Techni-
cal Report CSRG-538, 2006.

8. M. Sabetzadeh and S. Easterbrook. “Analysis of Inconsistency in Graph-Based Viewpoints:
A Category-Theoretic Approach”. In Proceedings of the 18th IEEE International Conference
on Automated Software Engineering, pages 12–21, October 2003.

9. M. Sabetzadeh and S. Easterbrook. “An Algebraic Framework for Merging Incomplete and
Inconsistent Views”. In 13th IEEE International Requirements Engineering Conference,
pages 306–318, September 2005.

10. M. Sabetzadeh and S. Easterbrook. iVuBlender: A tool for merging incomplete and in-
consistent views. In 13th IEEE International Requirements Engineering Conference, pages
453–454, September 2005.

11. M. Sabetzadeh and S. Easterbrook. View merging in the presence of incompleteness and
inconsistency. Requirements Engineering, 11(3):174–193, 2006.

12. T. Stahl, M. Vylter, and K. Czarnecki. Model-Driven Software Development. John Wiley
and Sons, 2006.

13. S. Uchitel and M. Chechik. “Merging Partial Behavioural Models”. In Proceedings of 12th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages
43–52, November 2004.

3


