
Formalization of an Aspect-Oriented
Modeling Approach

Farida Mostefaoui and Julie Vachon

DIRO, University of Montreal, Quebec, Canada
{mostefaf, vachon}@iro.umontreal.ca

Abstract. Aspect-oriented programming offers special concepts, such
as advices and join points, to implement crosscutting concerns which are
activated at various points throughout a program, therefore modifying its
base behavior. This article presents a high-level aspect-oriented modeling
approach and shows how it can be formalized to allow the verification
of aspect composition. Models written in Aspect-UML (our UML pro-
file) are translated into COOPN/2 Petri nets, whose corresponding state
graphs can be formally verified by model-checking.

1 Introduction

According to aspect-oriented programming (AOP) [1], crosscutting concerns can
be added to a base program by introducing advices at specific points. Hence,
one of the common criticisms of the aspect paradigm (as discussed in [2]) is
the difficulty to reason about aspect interactions once they are woven into the
compiled code. This article proposes a high-level modeling approach to carry
out the analysis and design of aspect-oriented (AO) software, as well as to en-
gage into formal verification of aspects composing such systems. A UML pro-
file, called Aspect-UML, is proposed to address AO modeling issues. Moreover,
Aspect-UML provides formal annotations, such as pre and post conditions, to
accurately specify the behavior of sensitive elements such as join points, ad-
vices and pointcuts. The COOPN/2 formalism [3] serves as a semantic basis
for Aspect-UML models. It thus provides object-oriented Petri nets to describe
interactions between objects and aspects composing the system as well as the
weaving of advices at join points. Thanks to the formal semantics of COOPN/2,
these Petri nets lend themselves well to verification (e.g. deadlock analysis and
CTL model-checking). Formalization of Aspect-UML models is the first step to-
wards the verification of correct aspect composition and weaving. Assuming the
base system and the aspects are both individually correct, the formal verification
process focuses on aspect integration and interaction, rather than on individual
local correctness of advices and pointcuts. It therefore aims to reveal important
interference problems such as

– Interference with base program. Violation of the base program specifi-
cation induced by woven aspects;

– Interference with aspect. Violation of an advice’s local specification in-
duced by the base program or some other woven aspect;

2

– Interference with system invariants. Violation of a system invariant
following the introduction of new aspects.

Figure 1 shows our verification process into the development flow of our AO
approach.

Model review Implementation

Aspect−oriented
program

��

��

Model−checking

[no]
[yes]

Semantic translation

Specification of system
properties and invariants

Formalization into Petri nets

Aspect−UML
model

COOPN/2
model

formulas
Temporal logic

Transition
system

Model−checking output

Verification

analysis & conception
Aspect−oriented system

Formal annotation of
aspects and join points

Modeling

Fig. 1. Aspect-oriented methodology

2 Aspect-UML profile

Despite their strong discipline, current object-oriented development methodolo-
gies allow some concerns1 to span over multiple modules, which results in sys-
tems that may be hard to understand, implement, maintain and evolve. Aspect-
orientation is a discipline which abstracts and encapsulates crosscutting concerns
into separate modules known as aspects. An aspect defines a set of crosscutting
operations (i.e. advices) to be applied dynamically at specific places, called join
points, in a base system. A set of join points can be gathered under a common
interface called pointcut. An advice which implements a pointcut interface is de-
clared to execute either before, after or around the join points referenced by
this pointcut.

Aspect-UML [4] is the UML profile we have defined to provide modeling
extensions taking into account the particular concepts of AOP. Figure 2 shows
the Aspect-UML class diagram of a simple telephony application. Two aspects
are shown, Timing and Billing, which represent new functionalities added to
the base system to time connections and charge customers for them. Follow-
ing our AO modeling approach (partially described in [5]), these aspects are
introduced via pointcut interfaces OpComplete, OpDrop, and OpStop. Moreover,
Aspect-UML provides annotations and constraints for the formal specification
of model fragments (such as join points, advices and pointcuts) relevant to the
verification of aspect composition.

– Join point 2 and advice specification: it is declarative and given in terms of
pre and post conditions. (Note that join points are crosscutted operations
on the class diagram while advices correspond to aspect operations.)

1 often referred to as supplementary requirements.
2 At the moment, our approach only considers types of join points associated with a

method call.

3

+ removeCall(call c)
+ addCall(call c)
+ getName()

Customer

+ name: string

Timer

+startTime :int
+stopTime:int
+c: Connection

+stop()

+getConnection()
+getTime()

+call *.Connection.complete()

+ opComplete(c:Connection)
: boolean

OpComplete
<<PointCut>>

+call *.Connection.drop()

+ opDrop(c:Connection)
: boolean

<<PointCut>>
OpDrop

Connection

+ state: int
+ caller : Customer

+ merge()
+ drop()
+ complete()
+ getCaller()

+ getTimer(Connection c): Timer

after opComplete(c:Connection)
after opDrop(c:Connection)

<<Aspect>>
Timing post :getTimer(c).getTime !=Null

pre : getTimer(c).getTime =Null
context Timing: opDrop

+call *.Timer.stop()

+ opStop(t:Timer)

<<PointCut>>
OpStop

: boolean

<<Aspect>>
Billing

+getBill(Customer cust) : Bill

after opStop(t:Timer)

+totalCharge :int
+client: Customer

+setUpCharge(time:int)

Bill

context Connection :drop
pre : state = 1
post : state = 2

+hangUp()
+pickUp()

Call

<<crosscut>>

<<crosscut>>
OpStop : :Binding
ToJoinPoint: Timer.stop

Binds : t <−−− target

Fig. 2. Class diagram for the Telecom application

– Pointcut specification: it specifies how the evaluation context is passed from
join points to related advices.

These Aspect-UML constraints are specified directly on the class diagram using
UML notes (cf. rectangles with down-right corner bent over on Figure 2).

3 Formalization of Aspect-UML models in COOPN/2

To be formally verified, Aspect-UML models are translated into the object-
oriented Petri net formalism COOPN/2. Figure 3 shows the translation of the
Telecom application model (its Aspect-UML class diagram) into COOPN/2.
Aspects and related classes are translated into Petri nets class modules (drawn
as big ovals) equipped with (1) places (small circles) modeling their attributes,
(2) external transitions (black rectangles) representing their public methods and
(3) internal transitions (white rectangles) denoting spontaneous private actions.
Dotted lines illustrate COOPN/2 transition synchronizations between objects.
Thanks to these various features, aspect weaving can be modeled by adding
places denoting the execution status (beginning, ending) of join points and by
defining appropriate synchronizations with advices. In our example, the weaving
of advice Timing::opComplete() after join point Connection::complete allows
to start timing the connection as soon as it is established. It is realized by adding
the following elements to the Connection object:

– a place named endComplete
– an internal transition named afterComplete that will spontaneously fire and

synchronize with advice Timing::opComplete() as soon as place endComplete
contains a token.

If resources are bounded, a finite state graph can be derived from the COOPN/2
model, thanks to its formal semantics[3]. Aspect composition errors can be de-
tected by looking for unacceptable terminal states, since violation of pre/post

4

�
�
�

�
�
�

Connection

complete

state

1

endComplete
endDrop

@
@

@@

afterDrop afterComplete

2
1

afterStop

Timer
create−timer c

startTime
stopTime

endStop
@

@

drop

stop

t1

t1

t2

t2

setUpCharge

charge

getTime

opStop t
..

getBill

listOfBills

Bill

getTimer

listOfTimers

opComplete c

opDrop c

Timing

Billing

Fig. 3. COOPN/2 formal model of the Telecom application

conditions will induce blocking states in the state graph. Other properties, such
as system invariants, can be formulated in temporal logic (e.g. CTL) and be
verified by model-checking over the state graph. In the above Telecom example,
the verification shall prove aspects Timing and Billing to be non interfering
and correctly used. In other words, the verification aims to guarantee:

– Non-interference between aspects, neither with the base system. Specifica-
tions in terms of pre and post conditions (e.g. specification of Timing:opDrop)
do not violate the specification of the base program at join points (and vice-
versa).

– Preservation of system invariants. System invariants of the Telecom applica-
tion remain true in the final woven system.

4 Conclusions

This paper briefly introduced our modeling and verification framework for aspect-
oriented (AO) systems. High-level modeling of AO system can be achieved us-
ing our UML profile Aspect-UML. Formalization of Aspect-UML models into
COOPN/2 opens the way to simulation and model-checking of significant non-
interference properties of AO systems.

To this day, most proposals for AO modeling do not rigorously address the
interference problem due to aspects. Among those who do [6, 7], most limit their
analysis to the detection of potential conflicts obviously revealed by the syn-
tax (e.g. aspects associated to the same join point are identified as potentially
conflictual). Inevitably, this type of verification is limited regarding coverage
and precision. To increase the accuracy and the significance of the verification
process, our approach goes beyond syntax and takes into account the semantic
of AO systems. Authors in [8] use model-checking to modularly verify aspect

5

advices. We also rely on incremental model-checking, but our approach, on the
one hand, deals with the formalization of models rather than programs. On the
other hand, our solution integrates the semantic transformation of our high-
level Aspect-UML models into Petri nets, whereas [8] ”regard[s] this problem as
orthogonal to [their] work” and relies on external tools to generate state ma-
chines from Java programs. Contrarily to most methods which are dealing with
source code, our approach tackles the problem from a top-down perspective by
addressing modeling before system implementation. Moreover, our formalization
provides an explicit semantics of AO features and is integrated to an autonomous
framework for modeling, model-checking and even simulating AO systems.

Our modeling approach is being fine tuned to allow easy transition from early
aspects to design aspects. Our framework therefore aims to provide use case-like
documentation for aspects, model refinement and incremental verification. A
model-checker and a deadlock analyzer for COOPN/2 are being developed. Of
course, extensive exploration of states increases precision but it also incurs non
negligible costs. We thus plan further work on optimizations and abstractions.

Other future directions for this project concern the implementation of an
automatic translator from Aspect-UML models to COOPN/2 specifications, as
well as the development of a detailed case study underlining the different kinds
of interferences caused by aspects in AO systems.

References

1. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: ECOOP’97, LNCS. (1997) 220–242

2. Leavens, G., Clifton, C., eds.: Foundations of Aspect-Oriented Languages Workshop.
In Leavens, G., Clifton, C., eds.: AOSD’05. Volume 4. (2005)

3. Biberstein, O.: COOPN/2: An object-oriented formalism for the specification of
concurrent systems. PhD thesis, EPFL, Genova Universiy, Switzerland (1997)

4. Mostefaoui, F., Vachon, J.: Approche basée sur les réseaux de Petri pour la
vérification de la composition dans les systèmes par aspects. RSTI - L’Objet
(12/2006) 157–182

5. Vachon, J., Mostefaoui, F.: Achieving supplementary requirements using aspect-
oriented development. In: ICEIS. (2004) 584–587

6. Douence, R., Fradet, P., Sudholt, M.: Composition, reuse and interaction analysis
of stateful aspects. In: 3rd Int. Conf. AOSD. (2004) 141–150

7. Weston, N., Taiani, F., Rashid, A.: Modular aspect verification for safer aspect-
based evolution. In: RAM-SE Workshop, with ECOOP. (2005)

8. Krishnamurthi, S., Fisler, K., Greenberg, M.: Verifying aspect advice modularly.
In: SIGSOFT’04/FSE-12. (2004)

