
The Protocol Derivation Assistant

Matthias Anlauff1, Dusko Pavlovic1, and Stephen Westfold1

Kestrel Institute, Palo Alto, CA, USA,
{ma,dusko,westfold}@kestrel.edu,

WWW home page: http://www.kestrel.edu/software/pda

Overview

The Protocol Derivation Assistant or, for short Pda, provides tool support for
the derivational approach to protocols as described in [12, 6, 4]. We will give a
brief overview of the capabilities of Pda; for further information please see [2].
The design of Pda reflects the basic ideas of the derivational approach to proto-
col design by providing (i) a rich, graphical user interface for entering protocol
derivations, (ii) support for refining models that correspond to these protocols,
and (iii) automated support for incrementally proving security properties of the
protocols and their models. We will briefly sketch these three aspects in the
following.

Protocol Derivations

The research area of security has generated a surprisingly wide range of models
and approaches. Even the basic paradigm of security comes in three different fla-
vors: computational (initiated by Diffie and Hellman [7]), information-theoretic
(based on Shannon’s work [14]), and symbolic (due to Dolev and Yao [8]). Inter-
estingly, the most abstract (and hence the least precise) model is the most recent,
and efforts to relate the three paradigms are of an even later date [1, 11]. Since
its inception, computer science has been preoccupied with such state machines
as Turing machines and automata. Consequently, computations were defined as
possible executions, i.e., sequences of actions, and reasoning about computation
has been in terms of predicates over such sequences. With the advent of the
Internet, and of computer networks in general, this simple paradigm of compu-
tation becomes insufficient. The interesting computational processes nowadays
do not occur within a state machine, but are distributed through interactions
of many state systems. The problem arising from protocol computation is that
traditional logical systems are not made to support distributed reasoning, which
is its very essence. Our objective is to develop modeling and logical methodolo-
gies, tools, and interfaces to facilitate interaction with the novel and unintuitive
logical situations of distributed reasoning. To describe a protocol, one usually
specifies its process model, its logical properties, and its conceptual components,
predecessors, versions, and descendants. The Protocol Derivation Assistant ex-
tends over these three dimensions as well. The process model is a version of
partially ordered multisets (pomsets) [13], adapted for security, as in [5, 12].
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Being implemented as an application on top of the Eclipse platform and
its Graphical Editing Framework (GEF), Pda provides a rich set of fea-
tures that support the developers in their tasks of creating and manipulat-
ing protocols and protocol derivations. Protocols are specified using a graph-
ical editing pane by drawing the desired run of the protocol similar to
the representation of protocols found in academic research articles. Figure
1 illustrates that using the basic challenge-response protocol: protocol def-
inition given as label “CR[A,B](c,r)” specifies the two roles: initiator (A)
and responder (B) as well as the generic challenge and response functions
(c and r, respectively). In general, Pda’s input consists of a graphical de-
scription of the protocols’ processes, and a textual description of the pro-
tocols’ semantics in form of the specification of basic entities and proper-
ties about the protocols. From protocol definitions like this, Pda users can
derive more concrete protocols using instance creation, where function pa-
rameters (e.g., c and r in Figure 1) are instantiated with more concrete
functions. Pda then automatically generates the protocol graphics with the
values for the functions substituted in messages and internal actions. On
the semantics side, Pda allows the user to incrementally tackle the security
properties for the derived pro-
tocols, which makes the pro-
cess of protocol verifications
a manageable task even for
more complex protocols. Tra-
ditional approaches lack this
ability, because they usually
try to verify the final proto-
col as a whole either resulting
in proof obligations being too
complex to be discharged by
any existing theorem provers
or forcing the human verifier
to abstract away certain tech-
nical issues, which in turn can
be the very cause of a se-
curity leak. For more sophis-
ticated transformations, Pda
offers the concept of rules, which Fig. 1: Specifying a protocol in Pda

can be used to specify arbitrary transformations and/or compositions of proto-
cols in order to construct a refined protocol out of already derived or defined
ones. This concept of rules is very powerful and has already allowed for express-
ing crucial transformation steps in the derivations of popular security protocols
like GDOI [12], MQV [10], etc. Pda also provides means to keep the protocol
derivations organized by allowing the user to split larger derivations into multi-
ple files and by providing a derivation browser that displays the structure of the
derivations regardless of their division into diagrams.
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Model Refinement and Automated Support

In parallel with the (graphical) protocol derivations, Pda supports the specifica-
tions and refinement of protocol models. In order to not dictate a specific logic
and interpretation of the protocols, the core Pda system defines interfaces for
plugging in arbitrary specification frameworks. However, in its current version,
Pda is shipped with a plugin for Kestrel’s Specware specification language [9],
which provides powerful functionality to support model refinement. In order to
make use of the model refinement support in Pda, the user specifies the seman-
tics of functions used in the protocol alongside with basic axioms in the spec-part
of the protocol, which is accessible from the graphical user interface. Using this
and the process graph defined for the protocol, the Specware-plugin generates
proof obligations for authenticity properties. These proof obligations can be dis-
charged (or not) from within the Pda-GUI using prove commands, which trigger
calls to the Snark theorem prover [15] integrated into the Specware system. In
case the proof went through, the corresponding conjecture will be transformed
into a theorem for refinements of the protocol for which it has been proven. This
concept manifests the power of the incremental approach, because in subsequent
derivation steps these proofs don’t need to be repeated, and thus decrease the
complexity of the correctness proofs to a level where there are manageable and in
most cases comprehensible. Again, a more detailed description of these features
is beyond the scope of this paper; Figure 2 shows a screenshot involving the use
of the theorem prover in a protocol derivation.
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Fig. 2. Running Pda session involving theorem prover invocation
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