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1 Introduction

The statechart formalism, proposed by Harel [6] as an extension of conventional fi-
nite state machines, is a visual language for specifying reactive systems. It addresses
the state explosion problem of state transition diagrams when modeling systems with
parallel threads of control by introducing the concepts of hierarchy, concurrency, and
communication.

The iState tool translates statecharts into various programming languages, currently
the Abstract Machine Notation (AMN) of the B method [1], Pascal, and Java. The
translation is based on a definition of statecharts in terms of an extension of Dijkstra’s
guarded commands [10, 11]. This work demonstrates a novel statechart verification ap-
proach using state invariants that has been added to iState.

2 Invariants

Statecharts allow executable specifications to be derived from user requirements. We
propose to supplement a statechart specification by invariants. These are attached to
states and specify what has to hold in a state configuration. Invariants are also derived
from the requirements. They are not meant for execution, but they allow the statechart
specification to be cross-checked. By themselves, statecharts do not lead to opportuni-
ties for consistency checks beyond well-formedness; invariants address this limitation
and give a way of documenting the “purpose” of states. Formally, invariants are predi-
cates over global variables, like x in the example below, and states (state tests):

R (x > 1)
S (x≤ 100)- -E [x 6= 5] / x := x+10

U (x > 6)

A M (x < 111)-

B N (x 6= 15)-

The definition of statecharts in [10, 11] translates states into variables and events into
(nondeterministic) operations, in which use of the independent (parallel) composition
of statements is made; the parallel composition operator is essential for translating
events with transitions in concurrent states. Using AMN, the states of the previous stat-
echart are translated to variables root ∈ {R,U}, r ∈ {S}, a ∈ {M} and b ∈ {N} and the
event E is translated to:

E , if root = R∧ r = S∧ x 6= 5 then
x := x+10 ‖ root := U ‖ a := M ‖ b := N

end
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Let si: State → Condition be a function that assigns to each state the invariant specified
by the designer, or true if none is specified, together with a test for being in that state.
For example:

si(S) = (r = S∧ x≤ 100)
si(U) = (root = U ∧ x > 6)

By the hierarchical structure of statechart, being in a state also means being in all of its
ancestor states, in exactly one of its child states if the state is an XOR state, and in all of
its child states if the state is an AND state. Hence, we have to compose state invariants
together to create the accumulated invariant ai(s) of state s. For example:

ai(S) = (root = R∧ x > 1)∧ (r = S∧ x≤ 100)
ai(U) = (root = U ∧ x > 6)∧ ((a = M∧ x < 111)∧ (b = N∧ x 6= 15))

Formally, let Basic, XOR, AND be disjoint subsets of the set State. The accumulated
invariant ai: State → Condition is defined with the help of the child invariant ci: State
→ Condition as follows:

ci(s) ,





si(s)∧ Ẇci[children[{s}]] if s ∈ XOR
si(s)∧Vci[children[{s}]] if s ∈ AND
si(s) if s ∈ Basic

ai(s) ,
^

si[parent+[{s}]]∧ ci(s)

Here, children[{s}] denotes the set of all child states of a state s and parent+[{s}] de-
notes the set of all ancestor states of s, where parent is the inverse of the child relation,
parent = child−1 [10, 11]. The operator ∨̇ stands for xor. The definition reflects the
meaning of XOR and AND states.

3 Invariant Verification

For each transition E[guard]/action from state S to T , where action is a statement that
may read and write to global variables, may include state tests, and may broadcast other
events, a verification condition is generated:

{ai(S)∧guard} action {ai(T )}
In the case of broadcasting in action, the broadcast is replaced by a call to the corre-
sponding operation. In the case of transitions in concurrent states on the same event E,
a combined transition is considered. The generation of the verification conditions then
follows the same structure as the generation of the code in [11]; the details are beyond
the scope of this paper. In the example, the verification condition for event E is:

{(root = R∧ x > 1)∧ (r = S∧ x≤ 100)∧ x 6= 5}
x := x+10 ‖ root := U ‖ a := M ‖ b := N

{(root = U ∧ x > 6)∧ ((a = M∧ x < 111)∧ (b = N∧ x 6= 15))}



3

4 Implementation

The iState tool currently uses the Simplify theorem prover [5] to discharge the generated
verification conditions because of its support of first order logic and linear arithmetic.
Simplify also has arrays built in, though currently iState does not use them. We are
working on extending iState with data types like arrays, rational numbers, and real
numbers. Once this is completed, we will make iState available for downloading. In
future, we also plan to extend the verification theory to timed transitions [9].

5 Discussion

Compared to the statechart verification approaches in [3, 4, 8], we use an event-centric
semantics of statecharts by looking at events as operations rather than data as in the
original state-centric semantics [7]. Instead of writing global temporal specification
(say in CTL or LTL) separately, inspired by nested invariant diagram [2], invariants
(safety properties) are attached to states.

By attaching invariants to states and utilizing the guarded command representation
of statecharts [10, 11], we arrive at a rather straightforward verification method. The
approach generating verification conditions leads to many small “local” verification
conditions and avoids some impossible configurations, compared to when specifying
invariants on the global level. As many small verification conditions are easier to handle
automatically than a few large ones, we believe that the approach can more easily scale
up for the verification of large systems.
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Appendix

The demonstration includes a poster and two prepared examples. The poster explains
the translation of statecharts to code in more detail than the current paper, as well as
verification of transitions in concurrent states that has been left out from this paper.

One example is a simple traffic light. The example is easy to grasp and allows
the generation of code and of the verification conditions to be illustrated. The second
example is the control of luxury sedan car seat. The seat has controls which modify
the position of the headrest, seat-base, seat-back, and height controls with front-back
up-down adjustments. Additionally, the controls include memory functions which store
the settings of the seat to be restored at a later time. The controller has to observe that
certain movements cannot occur at the same time and that movements cannot extend
past limits. Also, there are calibration procedures that must take place after power is
supplied, or there is a break in power. The example is not trivial. The demonstration will
show that some of the requirements are easily overlooked in a statechart implementation
and that verifying invariants can help detect these violations.

The demonstration will also show how iState works overall, how iState checks the
structural validity of statecharts, and how statecharts can be animated. We plan to make
iState available for downloading by August.

Some screenshots of a traffic light example are given below. We first draw a correct
statechart. After using the verification functionality of the iState tool, a message box
says the statechart is valid with respect to invariants attached:

A text area displays the detailed verification results:
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We next draw an incorrect statechart by specify the wrong initial state in the WE state,
i.e. we begin with a bad state configuration where red lights simultaneously appear in
both WE and NS states. A message box says the statechart is invalid with respect to
invariants attached:

The iState tool provides a text area (not shown here) displaying the detailed verification
results as in the previous case.


