
Dynamic Workflow Verification for Health Care

Jeff Dallien†?, Wendy MacCaull†??, Allen Tien‡

†Department of Mathematics, Statistics and Computer Science, St. Francis Xavier
University, Antigonish, NS. http://logic.stfx.ca/

‡Medical Decision Logic, Inc., Towson, MD. http://www.mdlogix.com/

1 Introduction

This research is initial work in the design and development of verifiable Workflow
Management Systems (WfMS) for application to biomedical research, clinical
care and public health. Though many software products are sold as workflow
systems, existing products are weak in 3 areas: (i) representation of workflow
rules; (ii) dynamic adaptation; and (iii) verification, all of which are critical in
the health sector. Solving the conceptual and technological issues in the workflow
problem has significant economic value, not the least of which is efficiency and
effectiveness of patient care. Indeed, this is part of a research project that ad-
dresses five of the ten key recommendations in the Canadian Institutes of Health
Research national consultation [4], namely: (i) workforce planning; (ii) manage-
ment of the healthcare workplace; (iii) timely access to care; (iv) managing for
safety and quality; and (v) managing and adapting to change. Here we describe
some applications and progress in developing an automated verifiable dynamic
WfMS. Interfacing such tools with Canada’s emerging electronic health records
will lead to significant commercialization opportunities.

2 Applications of WfMS in Health Care

Workflow is defined as the movement of tasks through a work process describing
how tasks are structured, who performs them, and their relative order. The
following details two applications of WfMS for health.

In a drug trial, each task to be performed is added to a workflow to describe
to medical staff what must happen at each point in the trial; eg., administering
drugs, taking readings, scheduling appointments, etc. Currently the planning is
done manually, perhaps with the assistance of a computer package to help draw
and store the workflow. Situations could arise during a drug trial that should
be addressed before patients receive treatment. For example, a patient may be
assigned incompatible treatments, a cycle in the workflow may arise by assigning
a patient from one part of the drug trial to another and back again, or a patient

? Support from an NSERC Research Capacity Development Graduate Fellowship is
gratefully acknowledged.

?? Support from Science and Engineering Research Council of Canada is gratefully
acknowledged.



may reach a point in the drug trial where no rules apply to them. Such situations
cost time and money and could adversely affect the patient.

Hospice palliative care is a combination of therapies that address the physical,
psychological, social, spiritual and practical needs of individuals with chronic
or terminal illnesses. Care is provided in numerous settings involving a complex
network of health professionals, and others. Tools are needed to guide and inform
the trajectory of patient care, be inclusive of all participants and care settings
and adapt dynamically to changes without compromising the quality and safety
of care. With verifiable tools, the complex network can be analyzed to determine
if desirable outcomes are always met and undesirable ones never occur.

3 Related Work

Many WfMSs have been developed but emphasis has not been placed on ver-
ification of the workflow. AgentWork [8] uses dynamic rules to allow users to
identify possible problems; the WfMS will adapt the workflow at runtime based
on the actions described in the dynamic rules. An example from [8] is used to
remove a drug from a patient’s treatment based on the results of a blood test
until the reading returns to normal:
WHEN critical-blood-status VALID-TIME (now - (5, day), now) AND

present-in-further-workflow(Drug-Administration(drug, “Etoposid”, P)

THEN drop(Drug-Administration(drug, “Etoposid”, P)

Unless normal-blood-status(P) VALID-TIME now

Such rules are valuable because they allow the WfMS to handle situations
that are exceptional, but more is needed. Analysis of the system and all the
possible scenarios is required as this is a safety critical system. While rules can
be used to add a safety net to the workflow, many possible workflows result due
to the combinations of rules which could be triggered. It is possible, even likely
in complicated systems, that the planners do not understand all of the possible
scenarios which could be created by these rules being triggered.

The METEOR system [1] is designed to manage workflows over large dis-
tributed systems. It also supports dynamic changes and exception handling.

Neither of these systems support verification as an analysis tool in the plan-
ning stage of a workflow. They rely on catching the errors at runtime and then
dealing with them. This can make designing a workflow easier, but verification
can help discover problems before the workflow is put into action. One existing
“workflow diagnosis tool” is Woflan [12]. It is used for analysis during planning,
but it cannot verify arbitrary properties of a workflow. It is limited to checking
“soundness” of a workflow, i.e., there is no deadlock and no unreachable tasks.

4 Dynamic Adaptation and Verification

Our verification system is designed as an analysis tool to discover where in a
dynamic workflow problems could occur before the drug trial or patient care

2



begins. Dynamic rules are good at handling safety properties, that is, something
bad does not happen. A rule can prevent a potential problem by changing the
workflow based on new data but cannot ensure that something desirable will
eventually happen or always happens because the time at which the rules are
triggered is uncertain and they are not intended to analyze the workflow as a
whole. It is possible that the change to the workflow caused by a rule could
create a new, undesirable situation. In a rule-only based system, another rule
would need to be triggered to fix the problem, which could then cause another
problem, requiring another rule and so on.

The goal of our system is to allow workflow designers to check both liveness
and safety properties of a workflow, including the possible situations caused by
dynamic rules during runtime. It avoids the rules-fixing-rules problem and does
not require the workflow system to expend the runtime resources required to
check rules needed only to catch problems caused by other rules. A verification
tool like ours can be run offline once to check a property and only needs to be
run again when new dynamic rules are added or the base workflow is changed. A
tool that can check workflows and the effect of dynamic rules will allow designers
to produce a workflow and rules package that is known to be correct.

5 System Details

Input to the system will be the workflow plan, the set of dynamic rules, and
the properties to be verified. The system will then check that these properties
hold on the original workflow and also any workflow that could be created by
applying the rules for dynamic changes.

Description Logics (DL), knowledge representation languages that allow for
expression and reasoning about structured knowledge [2], form the framework
within which our syntax was developed. A typical DL knowledge base consists
of a set of terminiological definitions, known as the TBox, which uses unary and
binary predicates (called concepts and roles) and expresses how they are related.
The knowledge base also includes an assertional part, the ABox, which identifies
individuals in the system based on the definitions in the TBox.

The system we are working on will support the following:
1. A knowledge base using type 0 ontologies [11] in Coherent Description

Framework to express what is happening at each state of the workflow. The
medical community has made extensive use of ontologies for representing termi-
nologies and the relationships that exist between the objects in the terminologies.
Large medical ontologies have been developed by various organizations such as
Health Level 7 [6] to create standards for the exchange, management and in-
tegration of health care information. Ontologies may be incorporated into the
knowledge base of the theorem prover allowing us the use of both explicit and
implicit knowledge included in these existing medical ontologies. For example,
the verification tool may be used to check that drugs from two classes which are
known to be incompatible are not administered simultaneously without explicit
listing of all of the pairs of drugs from the two classes.

3



2. Support for dynamic changes to the workflow with rules similar to those
used in [8]. The theorem prover will check the effect of the rules being triggered
on the properties that are being checked. For complexity reasons, the dynamic
rules are only triggered after key events that would add data to trigger a rule.
Currently, simple dynamic rules are implemented in the theorem prover, such
as adding a single occurance of a new task, or adding task B whenever task A
occurs. Work is in progress to deal with complex dynamic rules such as adding a
repetitive task when the portion of the workflow affected also contains a repeti-
tive task. The problem is adding the new loop to the existing one when the loops
may be of different lengths and/or time granularities.

3. Temporal Description Logic (ALCT ) [10] for expressing properties of the
workflow to be checked by the theorem prover. This logic is a basic DL with the
addition of LTL temporal operators which can be used on concepts. While this
does not provide the level of detail of a system that allows references to specific
days of the week, ALCT is decidable. This is important since our system will
be checking all possible paths and active rule effects up front. We can verify
properties like “Patients in trial arm A will be under the care of physician B
until the trial ends” and “Follow up visits are scheduled before discharge.” Other
benefits of using ALCT are that DLs have a close relationship to ontologies
which are already used in our system and in the health care field [7]; and DL
incorporates a syntax designed for the non-specialist in logic, facilitating the use
of the system. Research into identifying commonly used patterns of formulas
may be found in [9] and [3].

The implementation of the verification tool is a tableau-style theorem prover
[5] written in XSB Prolog using the Coherent Description Framework exten-
sion, which permits the integration of ontologies. The verification tool is being
designed to be compatiable with a WfMS being created by Medical Decision
Logic, Inc. This workflow engine supports dynamic rules like those used in the
verification tool and uses ontologies through the CDF extension of the XSB lan-
guage. The goal of developing our own reasoning engine using CDF and XSB is
to be compatible with this system and to take advantage of the ALCT language,
which we did not find implemented in any existing tools.

6 Future Work

We are working to include some measure of actual clock time in the workflow
model, so the active rules can indicate a duration for new tasks being added. The
smallest time unit considered so far is one hour. By incorporating actual time,
we can check properties like “Severe pain will be addressed within 2 hours.”

The complexity of the verification problem for large systems may make anal-
ysis intractable. We plan to investigate compositionality-based methods to find
a way of dividing the verification problem into smaller pieces while still guaran-
teeing correctness in the larger system.

4



References

1. K. Anyanwu, A. Sheth, J. Cardoso, J. Miller, and K. Kochut. Healthcare enterprise
process development and integration. Technical report, LSDIS Lab, Department
of Computer Science, University of Georgia, 2002.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
Description Logic Handbook. Cambridge Univeristy Press, 2003.

3. J. Dallien and W. MacCaull. Automated recognition of stutter invariance of LTL
formulas. Atlantic Electronic Journal of Mathematics, to appear, 2006.

4. M. Dault, J. Lomas, and M. Barer. Listening for Directions II. Final Report, 2004.
Canadian Health Services Research Foundation.

5. M. Fitting. First Order Logic and Automated Theorem Proving. Springer, 1995.
6. Health Level 7. http://www.hl7.org/.
7. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented systems

and frame-based languages. Journal of the ACM, 42:781–843, 1995.
8. R. Müller, U. Greiner, and E. Rahm. Agentwork: a workflow system supporting

rule-based workflow adaptation. Data & Knowledge Engineering, 2004.
9. D. Păun and M. Chechik. On closure under stuttering. Formal Aspects of Com-

puting, 14(4):342–368, 2003.
10. K. Schild. Combining terminological logics with tense logic. In Proceedings of the

6th Portuguese Conference on Artificial Intelligence. EPIA ’93, October 1993.
11. T. Swift. The Meaning of Cold Dead Fish. http://www.cs.sunysb.edu/~tswift/.
12. E. Verbeek and W.M.P. van der Aalst. Woflan 2.0: A petri-net-based workflow

diagonsis tool. Lecture Notes in Computer Science, vol. 1825. Springer, 2000.

5


