Quantum Predicative Programming

Anya Tafliovich

University of Toronto, Toronto ON M5S 3G4, Canada

anya@cs.toronto.edu

1 Introduction

Quantum computation and quantum information is the study of information
processing and communication accomplished with quantum mechanical systems.
In recent years the field has grown immensely. Scientists from various fields
of computer science have discovered that thinking physically about computa-
tion yields new and exciting results in computation and communication. There
has been extensive research in the areas of quantum algorithms, quantum com-
munication and information, quantum cryptography, quantum error-correction,
measurement-based quantum computation, theoretical quantum optics, and more.
Experimental quantum information and communication has also been a fruitful
field.

The subject of our work is quantum programming — developing programs
intended for execution on a quantum computer. We assume a model of a quantum
computer proposed by Knill [1]: a classical computer with access to a quantum
device that is capable of storing quantum bits, called qubits, performing certain
operations and measurements on these qubits, and reporting the results of the
measurements.

Traditionally, quantum computation is presented in terms of quantum cir-
cuits. Recently, there has been an attempt to depart from this convention for
the same reason that classical computation is generally not presented in terms
of classical circuits. As we develop more complex quantum algorithms, we will
need ways to express higher-level concepts with control structures in a readable
fashion.

We look at programming in the context of formal methods of program devel-
opment, or programming methodology. Our theory of quantum programming is
based on probabilistic predicative programming, a recent generalisation of the
well-established predicative programming [2, 3], which we deem to be the sim-
plest and the most elegant programming theory known today. It supports the
style of program development in which each programming step is proven correct
as it is made. We inherit the advantages of the theory, such as its generality, sim-
ple treatment of recursive programs, and time and space complexity. Our theory
of quantum programming provides tools to write both classical and quantum
specifications, develop quantum programs that implement these specifications,
and reason about their comparative time and space complexity all in the same
framework.

Since the work of Omer [4] in 2000, several attempts have been made to
formalize analysis and development of quantum algorithms and quantum com-
munication protocols. For a review of related work, the reader is referred to [5].

2 Quantum Predicative Programming

In this section, we demonstrate our approach by developing the solution to the
Deutsch-Jozsa’s problem ([6]), an example of the broad class of quantum algo-
rithms that are based on the quantum Fourier transform. Readers unfamiliar
with probabilistic predicative programming and/or basics of quantum comput-
ing are referred to [5] for introduction.

In quantum predicative programming we define a state of an n-qubit system
as a function 1 : 0,..2" — C, such that > 2:0,..2" - [¢z|> = 1. The unitary
transformations that describe the evolution of a n-qubit quantum system are
operations U defined on the system, such that U'U = I™, where I"™ is the
identity operation and UT denotes the adjoint of U. The simplest and the most
commonly used measurement in the computational basis is defined by

measure ¢r = [r'|? x (¢ = |r’)) x (¢/ = 0)

The most general quantum measurement is defined in [5].

The task in the Deutsch-Jozsa’s problem is as follows: given a function f :
0,..2" — 0,1 , such that f is either constant or balanced, determine which case
it is. Without any restrictions on the number of calls to f, we can write the
specification (let us call it S) as follows:

(f is constant V f is balanced) = b' = f is constant

where b is a boolean variable and the informally stated properties of f are
defined formally as follows:

fis constant = Vi :0,..2" - fi= f0
fis balanced =— ‘Zz :0,.2" - (=) =0
It is easy to show that
(f is constant V f is balanced)
= (f is constant = V(i :0,..2" "1 +1)- fi = f0)

That is, more than half of the values need to be equal to f0.
In our setting, we need to implement the specification R defined as follows:

V= Vi:(0,.2"7 1 +1)- fi= f0

The idea for a quantum solution is to create a suitable superposition for state
1, so that a measurement of 1) produces 0 if and only if f is constant, so that:

S<= Q; b:=(r=0) , where
Q = fisconstant \V f is balanced = f is constant = (r' =0)

To implement () we notice that:

f is constant = (’Zx 1)/%/2n
f is balanced — (‘Zm 1)/ /om

- 1)
~0)

We can show that if f is constant V f is balanced, variables x,y, and z are
from the domain 0,..2", and x - z is the dot product of x and z, then:

[is constant = (r' = 0)
2
— ‘(Zz x - (=)= jon |z)) r

=— measure (Zx(177 /v/2m x (Zz 1%/ 2”x|z>)) T
= measure (H®"(Uy(H®"|0)*™))) r
=1 :=[0)®"; o := H®™; ¢ := Uptp; o := H®"p; measure 1

where H is the Hadamard transform defined by
H=X:0,1—C-i:0,1-(p0+ (—1)" x 1)/v2
and Uy is the generalized quantum oracle defined by
Up=M:0,1=C-2:0,1-(=1)/" x ¢z
The complete solution is:
Y= [0)®"; ¢ := H¥™; o := Usy); b := H®™"1p; measure ¢r; b:= (r' =0)

Let us add to the specification a restriction on the number of calls to the
oracle by introducing a time variable. Suppose the new specification is:

(f is constant V f is balanced => b’ = f is constant) A (t' =t +1)

where we charge 1 unit of time for each call to the oracle and all other operations
are free. Clearly, the above quantum solution works.

Classically the specification is unimplementable. The strongest classically
implementable specification is

(f is constant V f is balanced = b = f is constant) A (t' <t+2""1 +1)

3 Our contribution

Our approach to quantum programming amenable to formal analysis is very dif-
ferent from almost all of the existing proposals. Work of [7] is the only one which
is similar to our work. The contribution of our work is twofold. Firstly, by build-
ing our theory on that in [3], we inherit the advantages it offers. The definitions

of specification and program are simpler: a specification is a boolean (or proba-
bilistic) expression and a program is a specification. The treatment of recursion
is simple: there is no need for additional semantics of loops. The treatment of ter-
mination simply follows from the introduction of a time variable; if the final value
of the time variable is oo, then the program is a non-terminating one. Correctness
and time and space complexity are proved in the same fashion; moreover, after
proving them separately, we naturally obtain the conjunction. Secondly, the way
probabilistic predicative programming is extended to quantum predicative pro-
gramming is simple and intuitive. The use of Dirac-like notation makes it easy
to write down specifications and develop algorithms. The treatment of compu-
tation with mixed states does not require any additional mechanisms. Quantum
predicative programming fully preserves predicative programming’s treatment of
parallel programs and communication, which provides for a natural extension to
reason about distributed quantum computation. Recent work defines the quan-
tum system, introduces programming with the quantum system, and several
well-known problems, their classical and quantum solutions, and their formal
comparative time complexity analyses. Current work involves expressing quan-
tum teleportation, dense coding, and various games involving entanglement, in
a way that makes complexity analysis of these quantum algorithms simple and
natural. We are interested in the possibilities of simple proofs and analysis of
programs involving communication, both via quantum channels and exhibiting
the LOCC (local operations, classical communication) paradigm. Future work
involves formalising quantum cryptographic protocols, such as BB84 [8], in our
framework and providing formal analysis of these protocols. This will naturally
lead to formal analysis of distributed quantum algorithms.

References

1. Knill, E.: Conventions for quantum pseudocode. Technical Report LAUR-96-2724,
Los Alamos National Laboratory (1996)

2. Hehner, E.: a Practical Theory of Programming. Second edn. Springer, New York
(2004) Available free at www.cs.utoronto.ca/~hehner/aPToP.

3. Hehner, E.: Probabilistic predicative programming. In: Mathematics of Program
Construction. (2004)

4. Omer, B.: Quantum programming in QCL. Master’s thesis, TU Vienna (2000)

5. Tafliovich, A., Hehner, E.: Quantum predicative programming. In: Mathematics of
Program Construction. (2006)

6. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Pro-
ceedings of the Royal Society of London 439 (1992) 553-558

7. Sanders, J.W., Zuliani, P.: Quantum programming. In: Mathematics of Program
Construction. (2000) 80-99

8. Bennet, C.H., Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. In: IEEE Int. Conf. Computers, Systems and Signal Processing. (1984)
175-179

