VagUoT: A Tool for Vacuity Detection

Mihaela Gheorghiu and Arie Gurfinkel

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada.
Email: {ng, ari e}@s. toronto. edu

Abstract. This paper presents VaqUoT — a University of Toronto tool for vacu-
ity detection, built on top of NuUSMV. In one model-checking pass, VaqUoT
establishes the truth value of a CTL formula as well as the largest set of non-
overlapping subformulas in which that formula is vacuous. We describe the tool
and evaluate its performance.

During model-checking, properties are sometimes satisfied by models for the wrong
reasons. Suppose a CTL formulay = AG (r V y V g) is checked against a model of
a traffic-light controller, where atomic propositions r, y, and g stand for the colors of
the light: red, yellow, and green, respectively. The formula is intended to express that
in every state the light has one of these colors. This requirement may not be satisfied,
even if ¢ passes the check: it is possible for the model to be overconstrained so that
the light always stays red. In such cases, an answer “true”, given usually by model-
checkers, is insufficient; a user needs to know why the formula is satisfied. Vacuity
detection [2] can help, by determining whether some parts of the formula do not matter
for the verification, i.e., are vacuous. For instance, y and g should be reported as vacuous
in.

Although various approaches to vacuity detection have been proposed (e.g., [1, 2,
6]), few implementations have been reported [1, 7], and to our knowledge none are
publicly available. Our tool VaqUoT is publicly available as a patch for the open-source
model-checker NuSMV. VaqUoT is based on techniques described in [5], where a multi-
valued lattice is introduced for the detection of all vacuous subformulas. Since this
lattice does not immediately lead to an efficient implementation, here we consider a
simpler lattice, but a similar approach.

Given a model and a CTL formula, VaqUoT checks whether the formula is true in
the model, and reports all the vacuous atomic propositions. Following [6], we consider
a proposition vacuous if it can be replaced by a constant (True or False) without affect-
ing the value of the formula in the model. We treat different occurrences of the same
atomic proposition as different propositions. When the formula is true, VaqUoT reports
whether all of its atomic propositions are vacuous (Vacuoudly True), none of them are
vacuous (Non-Vacuously True), or some of the atomic propositions are vacuous (Vac-
uously True followed by a list of the vacuous propositions). Similar answers are given
when the formula is false.

Implementation. The basis of VaqUoT is a multi-valued “vacuity” lattice and a
translation of CTL formulas into this lattice. Instead of the formulas begin interpreted
over the Boolean lattice ({True, False}, <), they are interpreted over the vacuity lattice
Ly = ({True False} x 24 C), where 24 is the powerset of the set A of atomic
propositions. Lattice Ly is determined only by the number of atomic propositions

(True, {a, b, c}) Model Formulas Basic MC Naive VD VagUoT

Total[Vacuous|Memory] Time |Witnesses| Time

(e {‘“’\g“% @y (\Tme’ e ravator 3l [45] 26 [435 [1600.16] 399 [5228.04[1441.22
(True, {a}] (True, {b}) (Tue,{c}) [guidance | 23 | 16 10 | 54.18 | 244 |306.99 | 274.81
production| 15 | 15 72 | 4241 | 187 |228.87|184.08

(True, 0) “cel |
(False, 0) abp10 Z 3 106 | 8318 | 26 |316.63 | 304.51
fgs5 6 2 106 | 18957 | 82 |239.04|191.92
(False {a}) (FA= (b)) (A= {ch) i rans| 15| 3 103 | 3021 | 81 | 5363 | 83.98
(False, {a, b}) (False, {a,c}) (False {b,c}) |l uCKySeven| 4 0 12,9 |469.33 20 1257.11| 842.48
ei senberg | 5 4 3 11.31 25 35.77 | 39.77
(Fal, {a, b, c}) ticTactoe | 42 | 3 89 | 1581 | 363 | 68.72 | 102.51

Fig. 1. () Vacuity lattice for three atomic propositions; (b) Experimental results.

in the formula being checked. An element (¢,s) € Ly is a possible result of vacu-
ity detection, showing that the formula has truth value ¢, and the largest subset of its
atomic propositions that are vacuous is s. For any u,v € 24, (False,u) C (True,v),
(True,u) C (True,v) iff u C v, and (False,u) C (False,v) iff v C w (note the re-
versal of set inclusion). The top element of £y is (True, A), or Vacuously True. The
bottom element is (False, A), or Vacuously False. The vacuity lattice for three atomic
propositions a, b, ¢ is depicted in Figure 1(a).

In VagUoT, we replace each atomic proposition a of ¢ by ((a AVT 4\4) V VF 4\4),
where VT 4\, and VF 4\, denote lattice values (True, A\ {a}), and (False, A\ {a}),
respectively. All replacements are done simultaneously. The resulting multi-valued for-
mula is then model checked. The justification for this translation follows from [5]. For
example, VaqUoT reports that the traffic-light formula «) defined earlier holds and is
vacuous in both y and g, by outputting (True, {y, g}).

In our implementation, we encode each value of the vacuity lattice £y as a 32-bit
word. The least-significant bit represents the truth: 1 for True, 0 for False. The other
bits represent the vacuity: 0 for vacuous, 1 for non-vacuous. For instance, for the traffic-
light formula 1, the lattice value (True, {y, g}) is represented by the word 00 . .. 00011,
where the rightmost 0011 means, respectively, that g and y are vacuous, r is not, and the
truth value is True. Thus, lattice operations can be efficiently implemented bitwise. The
fixed word length, which could be increased from 32 to 64 or 128, limits the number of
atomic propositions in the formulas we can check efficiently to 31, 63, 127, respectively.
Bit vectors of arbitrary length could be used, at the cost of increasing the complexity of
lattice operations.

VaqUoT is built on top of NuSMV, which uses the CUDD package for the imple-
mentation of decision diagrams (DDs) [4]. We have implemented multi-valued DDs
using CUDD ADDs and changed the interface between NuSMV and CUDD so that our
multi-valued operations are performed instead of their BDD counterparts. These mod-
ifications do not affect the complexity of decision diagram operations or fixpoint com-
putations, but they may affect performance, since the decision diagrams may be larger.
Our changes are compatible with the various NuSMV optimizations (e.g., cone of in-
fluence, dynamic reordering, partitioning). The tool is available as a patch for NuSMV
v. 2.1.2, fromwww. ¢s. t oront o. edu/ f m vaquot . ht nl .

Experiments. A few experiments comparing VaqUoT with basic model checking
and with a naive approach to vacuity detection are reported in Figure 1(b). The naive

approach consists of separately replacing each atomic proposition by True and then by
False and check the resulting formulas, in addition to the original formula; all these
formulas are called witnesses. The number of witnesses reported in Figure 1(b) is the
actual number of formulas checked in the naive approach, which we implemented on
top of NuSMV as well. The experiments were performed on a Dell PC with a 2.4 GHz
Intel Celeron CPU and 512 MB of RAM, running Linux 2.4.20. Models gui dance,
production-cel |, abpl10, and nsi wt r ans, and most of their properties are
from the NuSMV distribution. el evat or 3| is a model of a three-floor elevator sys-
tem written by students taking the Automated Verification class at Univ. of Toronto,
and f gs5 is a proprietary model for a flight-guidance system. Models | ucky Seven,
ei senberg,andti cTacToe are SMV translations of their Verilog counterparts dis-
tributed with the VIS model checker. For each model, we report the total number of
formulas checked and how many were found vacuous (Formulas), the total memory (in
MB) and time (in seconds) used by model-checking without vacuity detection (Basic
MC), the total number of witnesses and the time used by the naive vacuity detection
(Naive VD), and the running time of VagUoT. As it can be seen, VaqUoT performs
better than the naive approach in most cases, and by a considerable margin in some:
our algorithm avoids much of the redundant work performed by the naive approach. In
the cases where VaqUoT performs worse, we observed that the sizes of the decision
diagrams are the bottleneck, and we are investigating ways to overcome this.

The method of [7] is the closest to ours, from related work. In [7], witnesses are
generated and checked in parallel and compositionally, by a bottom-up exploration of
the parse tree of a formula, with explicit caching of intermediate results. The repre-
sentation of witnesses is explicit as well. All these are implicit in the multi-valued
decision diagrams in our implementation. True and false formulas are treated differ-
ently, whereas VaqUoT handles both uniformly in one pass. Extensive experiments and
comparisons between the two methods remain for future work; however, the results
shown in Figure 1(b), specifically, for the last three examples (used also in [7]), indi-
cate that both tools exhibit a similar improvement over the naive approach. In addition,
for ei senbergandti cTacToe, VaqUoT found more vacuous passes.

Complementary to our vacuity checking of CTL fromulas using BDD-based tech-
niques, the work of [8] addresses vacuity checking of LTL formulas, implemented using
SAT-based methods. In a parallel development, [3] re-examines the meaning of vacuity
in terms of system versus environment behavior, and argues that current vacuity check-
ing methodology produces too many false positives, that is, cases of vacuity that do
not indicate problems. As an alternative, [3] proposes checking when formulas pass/fail
solely due to errors in the environment model, and shows on a realistic case study that
this new methodology discovers truly problematic cases of vacuity.

References

1. R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and M. Vardi. “En-
hanced Vacuity Detection in Linear Temporal Logic ". In Proc. of CAV’ 03, volume 2725 of
LNCS pages 368-380, 2003.

2. |. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. “Efficient Detection of Vacuity in ACTL
Formulas”. In Proc. of CAV' 97, volume 1254 of LNCS pages 279-290, 1997.

. M. Chechik, M. Gheorghiu, and A. Gurfinkel. “Finding Environmental Guarantees‘. CSRG
Technical Report, submitted for publication, University of Toronto, April 2006.

. A. Cimatti, E.M. Clarke, , E. Giunchilia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. “NUSMYV Version 2: An Open Source Tool for Symbolic Model Checking”.

In Proc. of CAV' 02), volume 2404 of LNCS pages 359-364, 2002.

. A. Gurfinkel and M. Chechik. “How Vacuous Is Vacuous?”. In Proc. of TACAS 04, volume
2988 of LNCS pages 451-466, 2004.

. O. Kupferman and M. Vardi. “Vacuity Detection in Temporal Model Checking”. In Proc. of

CHARME' 99, volume 1703 of LNCS pages 82-96, 1999.

. M. Purandare and F. Somenzi. “Vacuum Cleaning CTL Formulae”. In Proc. of CAV' 02,

volume 2404 of LNCS pages 485-499, 2002.

. J. Simmonds, J. Davies, and A. Gurfinkel. “VaqTree: Exlpoiting Resolution Proofs for LTL
Vacuity Detection”. accepted at fm’06 tool session, University of Toronto, June 2006.

