
1

Reasoning About Timed CSP Models

Jin Song Dong, Xian Zhang?, Jun Sun, Ping Hao

School of Computing,
National University of Singapore

{dongjs,zhangxi5,sunj,haoping}@comp.nus.edu.sg

Abstract. HORAE is an interactive system which supports composing and rea-
soning of Timed CSP process descriptions. Timed CSP extends CSP by introduc-
ing the capability to quantify temporal aspects of sequencing and synchroniza-
tion. It is a powerful language to model real-time reactive systems. However, there
is no verification tool support for proving critical properties over systems mod-
eled using Timed CSP. HORAE, using Constraint Logic Programming (CLP) as
the underlying reasoning support, is capable to prove traditional safety proper-
ties and beyond, such as the reachability, deadlock-freeness, timewise refinement
relationship, lower or upper bound of variables, and etc.

1 Overview of HORAE

HORAE is an interactive tool which provides composing and reasoning of Timed CSP
process descriptions. Event-based specification languages like the classic Communicat-
ing Sequential Process (CSP) of Hoare’s [3] and its timed extension Timed CSP [7] have
been widely accepted and applied to a wide range of systems, including communication
protocols, embedded systems, etc [8]. It is important that system specified using CSP
or Timed CSP can be proved formally and even better if the proving is fully automated.

HORAE uses Constraint Logic Programming (CLP [4]) as underlying reasoning
mechanism. CLP is designed for mechanized proving based on constraint solving. It
has been successfully applied to model programs and transition systems for the purpose
of verification. The main advantage of using CLP pertains to expressiveness. For exam-
ple, [2] demonstrated the proof of some standard properties, as well as properties such
as time bounds between important events, on a CLP representation of Timed Safety Au-
tomata. [6] showed that CLP can be used to specify and verify properties like whether
systems modelled using Timed Automata are symmetric.

HORAE is built on the powerful constraint solver CLP(R) [5]. Both operational
and denotational semantics of Timed CSP processes are encoded in CLP(R) [1]. The
front-end of the tool is implemented in Java. The main features include:

– building Timed CSP models,
– specifying properties in a systematic way,
– verifying various kinds of properties with counterexamples provided if any, and
– generating LATEX presentation of the Timed CSP models.

? Author for correspondence, phone: +65 65162834

2

.t c s p
opereng

denoeng

.p

tc sp 2 c lp

 "yes "

"no"

p ro p e rty

trac e

.c lpEncode r Ve rification Engine

HORAE

Editor
Porperty
S pec ifier

Us e r Ed it

T imed CSP
d o cu men t

LaTe x
G e n e ra to r

La te x Do cu men t

Fig. 1. Overview of HORAE

An overview of HORAE is shown in Figure 1. It mainly consists of five components,
i.e., a powerful GUI editor to compose Timed CSP models, an encoder which translates
Timed CSP processes to CLP models, a property specifier which is used to specify
properties in a systematic way, a verification engine which is used to verify properties
and a LATEX code generator.

2 Building Timed CSP Models

In our system, Timed CSP processes are in ASCII form, i.e., machine readable Timed
CSP. HORAE has a user-friendly editor to build Timed CSP models. The encoder
tcsp2clp can automatically transform Timed CSP model in .tcsp-format into the CLP(R)
.clpr-format by syntax rewriting.

3 Verifying Models

The verification engine is the core component. The verification is performed by the
engine which takes a Timed CSP model in .clpr-format from the encoder and a property
as input. This engine has two modules, which are opereng and denoeng, building on the
operational model and the denotational model respectively. Different kinds of properties
are checked by different modules. For instance, timewise refinement properties would
be checked by denoeng, the variable bounds properties would be checked by opereng,
and the safety and liveness properties can be checked by both modules.

The operational semantics is modelled by capturing both evolution relations and
timed event transition relations of a process. In the denotational semantics, we encoded
the timed traces and timed failures model of Timed CSP, where a Timed CSP process
is represented by a set of timed traces or a set of timed failures. Detailed theory and
encoding of both semantics can be found in [1].

3.1 Property Specification and Verification

The module Property Specifier is used to specify three kinds of properties in a system-
atic way, which can later be verified by the verification engine.

3

Safety and Liveness Reachability properties are specified as: Reachable(P, Q, Ψ) = N
which tests whether N is a possible trace from process Q to P, with some constraint Ψ .
Deadlock freeness of process P can be checked in Deadlock(P).
Timewise Refinement Both trace timewise refinement and failures timewise refine-
ment relationship can be checked between two Timed CSP processes. The refinement
properties are specified in the form of P T[TF = Q and P SF[TF = Q respectively,
where P and Q are two processes.
Variable Bounds We can identify the lower or upper bound of a variable. For example,
we can identify whether a given value of a time variable T is an upper or lower bound of
the execution time for process P to evolve into process Q. These properties are specified
as: Upper(P, Q, time) = T or Lower(P, Q, time) = T. Similarly, the lower or upper
bound of the duration between two events A and B in a process P can also be specified
as P :: Upper(A, B, time) = T or P :: Lower(A, B, time) = T.

4 Experiment

In this section, we compare our tool with the mature model checker for CSP, namely
FDR (version 2.78), in terms of flexibility as well as efficiency. In the following, we
demonstrate our experiment with three examples on a Unix system located at a Sunfire
server with 1GB user memory. Because FDR is designed for CSP, the quantitative tim-
ing aspects of the examples have been abstracted before FDR verification.
Timed Vending Machine (TVM) The specification of the TVM is presented in [1].
The following properties are verified:

– tvm-1 Deadlock-freeness,
– tvm-2 Trace timewise refinement,
– tvm-3 Whether it is possible that coffee is selected while tea is dispatched.

Dining Philosopher The classic dining philosopher specification is available in [3]. We
implemented this example with N philosophers. Three properties are verified:

– philosN-1 Deadlock-freeness
– philosN-2 No more than N+1/2 philosophers can eat at the same time.
– philosN-3 Whether it is possible that one philosopher eat all the time with the others

starving.

The Railway Crossing The railway crossing system is originally presented in [9]. The
three properties selected for comparison are:

– railway-1 Deadlock-freeness
– railway-2 Legal trace check
– railway-3 Whether the lower bound for a train passes the crossing is 320s.

The experiment results are summarized in Table 1, where - indicates that the prop-
erty cannot be checked. We run the examples in both HORAE and FDR and calculate
the execution time of each property if it can be checked in that system. From the table,
we can see that most of our timings are competitive or even better, while in some cases,
we are not so competitive. The important metric of our experiment is that our tool can
handle a wider range of properties than FDR, including the timed-related properties,
bounds of variables, event specified properties, and etc.

4

Assertion CLP(R) (secs.) FDR (secs.)
tvm-1 0.00 0.23

tvm-2 0.03 0.27
tvm-3 0.01 −

railway-1 0.25 0.25
railway-2 0.02 0.26
railway-3 0.32 −

Assertion CLP(R) (secs.) FDR (secs.)
philos3-1 0.12 0.25
philos3-2 0.22 −
philos3-3 0.04 0.17
philos4-1 0.84 0.28
philos4-2 2.5 −
philos4-3 0.1 0.3

Table 1. Experiment Results

5 Conclusion

In this work, we developed an interactive tool for modelling and reasoning of Timed
CSP models. To our knowledge, it is the first mechanized reasoning support for Timed
CSP. HORAE is a distinguished tool support for modelling and verifying complex
real-time systems. It uses CLP as underlying reasoning support. Both operational and
denotational semantics of Timed CSP are encoded so that a wide range of properties
can be specified and verified soundly.

References

1. J. S. Dong, J. Sun, P. Hao, and X. Zhang. A Reasoning Method for Timed CSP based on
Constraint Solving. Technical report TRC6/06, School of Computing, National University of
Singapore, 2006.
http://www.comp.nus.edu.sg/∼zhangxi5/horae.ps.

2. Gopal Gupta and Enrico Pontelli. A constraint-based approach for specification and verifica-
tion of real-time systems. In IEEE Real-Time Systems Symposium, pages 230–239, 1997.

3. C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer
Science. Prentice-Hall, 1985.

4. Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19/20:503–581, 1994.

5. Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The clp(r) language
and system. ACM Trans. Program. Lang. Syst., 14(3):339–395, 1992.

6. Joxan Jaffar, Andrew E. Santosa, and Razvan Voicu. A clp proof method for timed automata.
In RTSS, pages 175–186, 2004.

7. George M. Reed and A. W. Roscoe. A Timed Model for Communicating Sequential Processes.
In Proceedings of ICALP, pages 314–323, 1986.

8. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
9. Steve Schneider. Concurrent and Real-time System: The CSP approach. JOHN WILEY &

SONS, LTD, 2000.

