Lecture 5

Towards a Verifying Compiler:
Multithreading

Wolfram Schulte
Microsoft Research
Formal Methods 2006

Race Conditions, Locks,
Deadlocks, Invariants, Locklevels
Access Sets

Joint work with Rustan Leino, Mike Barnett, Manuel Fahndrich, Herman Venter, Rob
DeLine, Wolfram Schulte (all MSR), and Peter Muller (ETH), Bart Jacobs (KU Leuven)
and Bor-Yuh Evan Chung (Berkley) .

Review: Pure Methods and Model Fields

Data abstraction is crucial to express functional correctness
properties

* Verification methodology for model fields
— Model fields are reduced to ordinary fields with automatic updates

* Verification challenges for model fields and pure methods
— Consistency
— Weak purity
— Heap dependence (and frame properties)

Multi-threading

* Data race prevention
* Invariants and ownership trees

* Deadlock prevention

Multithreading

Multiple threads running in
parallel, reading and writing

shared data

A data race occurs when a
shared variable is written by
one thread and concurrently
read or written by another

thread

How to guarantee that there

are no data races?

class Counter {
int dangerous;

void Inc() {
int tmp = dangerous;
dangerous = tmp + 1; }

Counter ct = new Counter();
new Thread(ct.Inc).Start();
new Thread(ct.Inc).Start();

/[What is the value of

/[ct.dangerous after both

/[threads have terminated?

Mutexes: Avoiding Races

Mutual exclusion for shared objects is provided via locks

Locks can be obtained using a /ock block. A thread may
enter a lock (0) block only if no other thread is executing
inside a lock (o) block; else, the thread waits

When a thread holds a lock on object o, C#/Java
— do prevent other threads from locking o but
— do not prevent other threads from accessing o’s fields

Program Method for Avoiding Races

Our program rules enforce that
a thread t can only access a field of object o if o is either
thread local ort has locked o

We model accessibility using access sets:

* Athread’s access set consists of all objects it has created
but not shared yet or whose lock it holds.

* Threads are only allowed to access fields of objects in their
corresponding access set

Our program rules prevent data races by ensuring that access
sets of different threads never intersect. 6

Annotations Needed to Avoid Races

 Threads have access sets

— t.A'is a new ghost field in each thread t describing the set of
accessible objects

* Objects can be shared
— o.shared is a new boolean ghost field in each object o
— share(o) is a new operation that shares an unshared o

* Fields can be declared to be shared
— Shared fields can only be assigned shared objects.

Object Life Cycle

Verification via Access Sets

Tr[[o=new C();]] = ...
o.shared:= false;
tid.A[o]:= true

Tr[[x=0.1£]] = ...
assert tid.A[o];
X :=o.f;

Tr[[of=x;]] = ...
assert tid.AJo];
if (f is declared shared)
assert x.shared,;
o.f :=x;

Tr[[share(0)]] = ...
assert tid.Ao];
assert ! o.shared;
o.shared :=true;
tid.A[o] :=false;

Tr[[lock (0) S]] = ...
assert ! tid.Alo];
assert o.shared;
havoc 0.%;
tid.A[o]:=true;
Tr[[S]];
tid.AJo]:= false

A Note on havoc Iin the Lock Rule

When a thread (re) acquires o, o might have been changed by
another thread.

int X;
lock (0) {
X = 0.f;
}
lock (0) {
assert x == o.f; // fails

}

So we have to “forget all knowledge about o’s fields”. We do so by
assigning an arbitrary value to all of 0’s field, expressed as
havoc o0.*

Example for Data Race Freedom

Counter ct = new Counter();

share(ct);

new Thread(delegate () { lock (ct) ct.Inc(); }).Start();
new Thread(delegate () { lock (ct) ct.Inc(); }).Start();

Example for Data Race Freedom

/[thread tO
Counter ct = new Counter();
share(ct);
Session s1 =new Session(ct,1);
Session s2 =new Session(ct,2);

/I transfers s1 to t1
t1 = new Thread(s1.Run);

/] transfers s2 to t2
t2 = new Thread(s2.Run);

t1.Start();
t2.Start();

class Session {
shared Counter ct ;
int id;

Session(Counter ct , int id)
requires ct.shared;
ensures tid.Afthis] A ! this.shared,;
{ this.ct=ct; this.id=id; }

void Run()
requires tid.A[this];
{for ;)
lock (this.ct)
this.ct.Inc();

12

Soundness

Theorem

[0 Othreads t1,t2 :: t1£12 0 t1.An t2.A =01
[J [object o, thread t :: o.shared && o € t.A 1 t holds o’s lock

* Proof sketch for Theorem
— new
— share (0)
— Entry into lock (0)
— Exit from lock (0)

Corollary

* Valid programs don’t have data races

13

Multi-threading

* Data race prevention
* Invariants and ownership trees

* Deadlock prevention

14

Invariants and Concurrency

Invariants, whether over a single object or over an ownership
tree, can be protected via a single lock (coarse grained
locking)

For sharing and locking
* require an object o to be valid when o becomes free
* ensures O’s invariant on entry to its locked state

For owned objects

* require that commited objects are unaccessable, but
— unpack(o) adds o’s owned objects to the thread’s access set

— pack(o) deletes o's owned objects from the thread’s access set
15

Veritying Multi-threaded Pack/Unpack

Tr[[unpack o;]] =
assert tid.Ao];
assert o.inv;
foreach (c | c.owner = 0)
{ tid.A[c] := true; }

o.inv := false;

Tr[[pack o;]] =
assert tid.A[o];
assert | o.inv;

assert [lc: c.owner =0 [
tid.Alc] A c.inv;

foreach (c | c.owner = 0)
{ tid.A[c] := false; }

assert Inv(0);

o.inv := true;

16

Ownership: Verifying Lock Blocks

Finally, when locking we also have to “forget the knowledge

about” owned objects

Tr[[lock (0) S;] =
assert o.shared;
assert ! tid.A[o];
foreach (p | 'tid.A[p]) havoc p.*;
tid.A[o]:=true;
Tr[[S]] ;
tid.A[o]:= false;

17

Outline of the talk

* Data race prevention
* Invariants and ownership trees
* Deadlock prevention

18

Multi-threading

* Data race prevention
* Invariants and ownership trees

* Deadlock prevention

19

Concurrency: Deadlocks

A deadlock occurs when a set of

threads each wait for a mutex
(i.e shared object) that
another thread holds

Methodology:

partial order over all shared
objects

In each thread, acquire shared
objects in descending order

Dining Philosophers

®1 has F1, waits for F2
®2 has F2, waits for F3
®3 has F3, waits for F1

20

Annotations Needed to Avoid Deadlocks

We construct a partial order on shared objects, denoted by

* When o is shared, we add edges to the partial order as
specified in the share command’s where clause.

(Specified lower bounds have to be less than specified
upper bounds)

* Each thread has a new ghost field /ockstack, holding the
set of acquired locks

21

Verification via Lock Ordering and

Lockstacks
Tr[[share o Tr[[lock (0) S]] =
wherep 0&&o q;]] = | gssert o.shared:
assert o U tid.A; assert tid.lockstack != empty O
assert | o.shared; o tid.lockstack.top();
tid.A[o] := false; tid.lockStack.push(o);
o.shared := true; foreach (p | tid.A[p]) havoc p.*;
assertp q; tid.A[o]:=true;
assumep 0&&o0 (; Tr[[S]] ;
tid.A[o]:= false;
tid.lockstack.pop(0);

N
N

Example: Deadlock Avoidance (contd.)

Dining Philosophers

f1 = new Fork(); share f1;
f2 = new Fork(); share f2 where f1 2;
f3 = new Fork(); share f3 where f2 {3 ;

P1 = new Thread(delegate() {
lock (f2) { lock (f1) { /*eat*/ }}});
P1.Start();

P2 = new Thread(delegate() {
lock (f3) { lock (f2) {/*eat*/ }}}); P2.Start();

P3 = new Thread(delegate() {
lock (f3) { lock (f1) {/*eat*/ }}}); P3.Start();

23

Conclusion

Clients can reason entirely as if world was single-
threaded for non-shared objects

Supports caller-side locking and callee-side locking

Deadlocks are prevented by partially ordering shared
objects

24

The End

(for now)

Thank you!

http://research.micsoft.com/specsharp

http://research.micsoft.com/specsharp

Lecture 5

Towards a Verifying Compiler:
Multithreading

Wolfram Schulte
Microsoft Research
Formal Methods 2006

Race Conditions, Locks,
Deadlocks, Invariants, Locklevels
Access Sets

Joint work with Rustan Leino, Mike Barnett, Manuel Fahndrich, Herman Venter, Rob
DeLine, Wolfram Schulte (all MSR), and Peter Miiller (ETH), Bart Jacobs (KU Leuven)
and Bor-Yuh Evan Chung (Berkley) . 1

Review: Pure Methods and Model Fields

Data abstraction is crucial to express functional correctness
properties

* Verification methodology for model fields
— Model fields are reduced to ordinary fields with automatic updates

* Verification challenges for model fields and pure methods
— Consistency
— Weak purity
— Heap dependence (and frame properties)

Multi-threading

* Data race prevention
* Invariants and ownership trees

* Deadlock prevention

Multithreading

Multiple threads running in class Counter {
parallel, reading and writing | int dangerous;
shared data void Inc() {

int tmp = dangerous;

dangerous =tmp + 1; }

A data race occurs when a
shared variable is written by

one thread and concurrently | counter ct = new Counter();

—

read or written by another new Thread(ct.Inc).Start();
thread new Thread(ct.Inc).Start();

/I What is the value of
How to guarantee that there /I ct.dangerous after both

are no data races? /I threads have terminated?

Mutexes: Avoiding Races

Mutual exclusion for shared objects is provided via locks

Locks can be obtained using a lock block. A thread may
enter a lock (0) block only if no other thread is executing
inside a lock (0) block; else, the thread waits

When a thread holds a lock on object o, C#/Java
— do prevent other threads from locking o but
— do not prevent other threads from accessing o’s fields

Program Method for Avoiding Races

Our program rules enforce that
a thread t can only access a field of object o if o is either
thread local or t has locked o

We model accessibility using access sets:

* Athread’s access set consists of all objects it has created
but not shared yet or whose lock it holds.

* Threads are only allowed to access fields of objects in their
corresponding access set

Our program rules prevent data races by ensuring that access
sets of different threads never intersect. 6

Annotations Needed to Avoid Races

* Threads have access sets

— t.A'is a new ghost field in each thread t describing the set of
accessible objects

* Objects can be shared
— o.shared is a new boolean ghost field in each object o
— share(0) is a new operation that shares an unshared o
* Fields can be declared to be shared
— Shared fields can only be assigned shared objects.

Object Life Cycle

acquire

new T()

release
unshared

Verification via Access Sets

Tr[[o = new C();]] = ...
o.shared:= false;
tid.Af[o]:= true

Trl[x=0.f;]] = ...
assert tid.Alo];
X :=o0.f;

Trllof=x]] = ...
assert tid.A[o];
if (f is declared shared)
assert x.shared;
o.f :=x;

Tr[[share(o)]] = ...
assert tid.A[o];
assert ! o.shared;
o.shared :=true;
tid.A[o] :=false;

Tr[[lock (0) S 11 = ...
assert ! tid.Afo];
assert o.shared;
havoc o0.%;
tid.A[o]:=true;

Tr([SII;
tid.A[o]:= false

A Note on havoc in the Lock Rule

When a thread (re) acquires o, o might have been changed by
another thread.
int x;
lock (o) {
x=o0.;
}
lock (o) {
assert x == o.f; // fails

}

So we have to “forget all knowledge about o’s fields”. We do so by
assigning an arbitrary value to all of o’s field, expressed as
havoc 0.*

10

Example for Data Race Freedom

Counter ct = new Counter();

share(ct);

new Thread(delegate () { lock (ct) ct.Inc(); }).Start();
new Thread(delegate () { lock (ct) ct.Inc(); }).Start();

11

Example for Data Race Freedom

/I thread t0
Counter ct = new Counter();
share(ct);
Session s1 =new Session(ct,1);
Session s2 =new Session(ct,2);

/I transfers s1 to t1
t1 = new Thread(s1.Run);

/I transfers s2 to t2
t2 = new Thread(s2.Run);

t1.Start();
t2.Start();

class Session {
shared Counter ct ;
intid;

Session(Counter ct , int id)
requires ct.shared;
ensures tid.Afthis] A ! this.shared;
{ this.ct=ct; this.id=id; }

void Run()
requires tid.A[this];
{for(; ;)
lock (this.ct)
this.ct.Inc();

12

Soundness

Theorem

O Othreads t1,t2 ::t1#t2 0 t1.An t2A=0
O O object o, thread t :: o.shared && o € t.A [0 t holds 0’s lock

* Proof sketch for Theorem
- new
— share (0)
— Entry into lock (0)
— Exit from lock (o)

Corollary

’° Valid programs don’t have data races

13

Multi-threading

* Data race prevention
* Invariants and ownership trees

* Deadlock prevention

14

Invariants and Concurrency

Invariants, whether over a single object or over an ownership
tree, can be protected via a single lock (coarse grained
locking)

For sharing and locking
* require an object o to be valid when o becomes free
* ensures O’s invariant on entry to its locked state

For owned objects
* require that commited objects are unaccessable, but
— unpack(o) adds o’s owned objects to the thread’s access set

— pack(o) deletes o’'s owned objects from the thread’s access set
15

Verifying Multi-threaded Pack/Unpack

Tr[[unpack o;]] =
assert tid.A[o];
assert 0.inv;
foreach (c | c.owner = 0)
{tid.A[c] := true; }
o.inv := false;

Tr[[pack 0;]] =
assert tid.A[o];
assert ! o.inv;

assert [c: c.owner =0 [J
tid.Alc] A c.inv;

foreach (c | c.owner = 0)
{tid.A[c] := false; }

assert Inv(0);

o.inv := true;

16

Ownership: Verifying Lock Blocks

Finally, when locking we also have to “forget the knowledge

about” owned objects

Tr[[lock (0) S; 1] =
assert o.shared;
assert ! tid.A[o];
foreach (p | !tid.A[p]) havoc p.*;
tid.A[o]:=true;
Tr{[S]] ;
tid.A[o]:= false;

17

Outline of the talk

* Data race prevention
* Invariants and ownership trees
* Deadlock prevention

18

Multi-threading

* Data race prevention
* Invariants and ownership trees

* Deadlock prevention

19

Concurrency: Deadlocks

A deadlock occurs when a set of

threads each wait for a mutex
(i.e shared object) that
another thread holds

Methodology:

partial order over all shared
objects

in each thread, acquire shared
objects in descending order

Dining Philosophers

Fork 1 ork 3

Fork 2
®1 has F1, waits for F2

®2 has F2, waits for F3
®3 has F3, waits for F1

20

Annotations Needed to Avoid Deadlocks

We construct a partial order on shared objects, denoted by

* When o is shared, we add edges to the partial order as
specified in the share command’s where clause.

(Specified lower bounds have to be less than specified
upper bounds)

* Each thread has a new ghost field /ockstack, holding the
set of acquired locks

21

Verification via Lock Ordering and
Lockstacks

Tr[[share o

where p
assert o O tid.A;
assert ! o.shared;
tid.A[o] := false;
o.shared := true;

assert p
assume p

q;

0&&o

0&&o

q;

gl =

Tr[[lock (0) S 1] =
assert o.shared;

assert tid.lockstack '= empty O
o tid.lockstack.top();

tid.lockStack.push(o);

foreach (p | 'tid.A[p]) havoc p.*;
tid.A[o]:=true;

Tr{[S]] ;

tid.A[o]:= false;
tid.lockstack.pop(0);

N
N

Example: Deadlock Avoidance (contd.)

Dining Philosophers

f1 = new Fork(); share f1;
f2 = new Fork(); share f2 where f1 12;
f3 = new Fork(); share f3 where 2 {3 ;

P1 = new Thread(delegate() {
lock (f2) { lock (f1) { /*eat*/ }}});
P1.Start();
P2 = new Thread(delegate() {
lock (f3) { lock (f2) {/*eat*/ }}}); P2.Start();
P3 = new Thread(delegate() {
lock (f3) { lock (f1) {/*eat*/ }}}); P3.Start();

23

Conclusion

Clients can reason entirely as if world was single-
threaded for non-shared objects

Supports caller-side locking and callee-side locking

Deadlocks are prevented by partially ordering shared
objects

24

The End

(for now)

Thank you!

http://research.micsoft.com/specsharp

25

