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Review: Pure Methods and Model Fields

Data abstraction is crucial to express functional correctness
properties

* Verification methodology for model fields
— Model fields are reduced to ordinary fields with automatic updates

* Verification challenges for model fields and pure methods
— Consistency
— Weak purity
— Heap dependence (and frame properties)



Multi-threading

* Data race prevention
* Invariants and ownership trees

* Deadlock prevention



Multithreading

Multiple threads running in
parallel, reading and writing

shared data

A data race occurs when a
shared variable is written by
one thread and concurrently
read or written by another

thread

How to guarantee that there

are no data races?

class Counter {
int dangerous;

void Inc() {
int tmp = dangerous;
dangerous = tmp + 1; }

Counter ct = new Counter();
new Thread(ct.Inc).Start();
new Thread(ct.Inc).Start();

/[ What is the value of

/[ ct.dangerous after both

/[ threads have terminated?




Mutexes: Avoiding Races

Mutual exclusion for shared objects is provided via locks

Locks can be obtained using a /ock block. A thread may
enter a lock (0) block only if no other thread is executing
inside a lock (o) block; else, the thread waits

When a thread holds a lock on object o, C#/Java
— do prevent other threads from locking o but
— do not prevent other threads from accessing o’s fields



Program Method for Avoiding Races

Our program rules enforce that
a thread t can only access a field of object o if o is either
thread local ort has locked o

We model accessibility using access sets:

* Athread’s access set consists of all objects it has created
but not shared yet or whose lock it holds.

* Threads are only allowed to access fields of objects in their
corresponding access set

Our program rules prevent data races by ensuring that access
sets of different threads never intersect. 6



Annotations Needed to Avoid Races

 Threads have access sets

— t.A'is a new ghost field in each thread t describing the set of
accessible objects

* Objects can be shared
— o.shared is a new boolean ghost field in each object o
— share(o) is a new operation that shares an unshared o

* Fields can be declared to be shared
— Shared fields can only be assigned shared objects.



Object Life Cycle




Verification via Access Sets

Tr[[o=new C();]] = ...
o.shared:= false;
tid.A[o]:= true

Tr[[x=0.1£]] = ...
assert tid.A[o];
X :=o.f;

Tr[[of=x;]] = ...
assert tid.AJo];
if (f is declared shared)
assert x.shared,;
o.f :=x;

Tr[[share(0)]] = ...
assert tid.Ao];
assert ! o.shared;
o.shared :=true;
tid.A[o] :=false;

Tr[[lock (0) S ]] = ...
assert ! tid.Alo];
assert o.shared;
havoc 0.%;
tid.A[o]:=true;
Tr[[S]];
tid.AJo]:= false




A Note on havoc Iin the Lock Rule

When a thread (re) acquires o, o might have been changed by
another thread.

int X;
lock (0) {
X = 0.f;
}
lock (0) {
assert x == o.f; // fails

}

So we have to “forget all knowledge about o’s fields”. We do so by
assigning an arbitrary value to all of 0’s field, expressed as
havoc o0.*



Example for Data Race Freedom

Counter ct = new Counter();

share(ct);

new Thread(delegate () { lock (ct) ct.Inc(); }).Start();
new Thread(delegate () { lock (ct) ct.Inc(); }).Start();




Example for Data Race Freedom

/[ thread tO
Counter ct = new Counter();
share(ct);
Session s1 =new Session(ct,1);
Session s2 =new Session(ct,2);

/I transfers s1 to t1
t1 = new Thread(s1.Run);

/] transfers s2 to t2
t2 = new Thread(s2.Run);

t1.Start();
t2.Start();

class Session {
shared Counter ct ;
int id;

Session(Counter ct , int id)
requires ct.shared;
ensures tid.Afthis] A ! this.shared,;
{ this.ct=ct; this.id=id; }

void Run()
requires tid.A[this];
{for ;)
lock (this.ct)
this.ct.Inc();
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Soundness

Theorem

[0 Othreads t1,t2 :: t1£12 0 t1.An t2.A =01
[J [ object o, thread t :: o.shared && o € t.A 1 t holds o’s lock

* Proof sketch for Theorem
— new
— share (0)
— Entry into lock (0)
— Exit from lock (0)

Corollary

* Valid programs don’t have data races

13




Multi-threading

* Data race prevention
* Invariants and ownership trees

* Deadlock prevention

14



Invariants and Concurrency

Invariants, whether over a single object or over an ownership
tree, can be protected via a single lock (coarse grained
locking)

For sharing and locking
* require an object o to be valid when o becomes free
* ensures O’s invariant on entry to its locked state

For owned objects

* require that commited objects are unaccessable, but
— unpack(o) adds o’s owned objects to the thread’s access set

— pack(o) deletes o's owned objects from the thread’s access set
15



Veritying Multi-threaded Pack/Unpack

Tr[[unpack o;]] =
assert tid.Ao];
assert o.inv;
foreach (c | c.owner = 0)
{ tid.A[c] := true; }

o.inv := false;

Tr[[ pack o;]] =
assert tid.A[o];
assert | o.inv;

assert [lc: c.owner =0 [
tid.Alc] A c.inv;

foreach (c | c.owner = 0)
{ tid.A[c] := false; }

assert Inv( 0 );

o.inv := true;
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Ownership: Verifying Lock Blocks

Finally, when locking we also have to “forget the knowledge

about” owned objects

Tr[[lock (0) S; ] =
assert o.shared;
assert ! tid.A[o];
foreach (p | 'tid.A[p]) havoc p.*;
tid.A[o]:=true;
Tr[[S]] ;
tid.A[o]:= false;
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Outline of the talk

* Data race prevention
* Invariants and ownership trees
* Deadlock prevention
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Multi-threading

* Data race prevention
* Invariants and ownership trees

* Deadlock prevention
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Concurrency: Deadlocks

A deadlock occurs when a set of

threads each wait for a mutex
(i.e shared object) that
another thread holds

Methodology:

partial order over all shared
objects

In each thread, acquire shared
objects in descending order

Dining Philosophers

®1 has F1, waits for F2
®2 has F2, waits for F3
®3 has F3, waits for F1

20



Annotations Needed to Avoid Deadlocks

We construct a partial order on shared objects, denoted by

* When o is shared, we add edges to the partial order as
specified in the share command’s where clause.

(Specified lower bounds have to be less than specified
upper bounds)

* Each thread has a new ghost field /ockstack, holding the
set of acquired locks

21



Verification via Lock Ordering and

Lockstacks
Tr[[share o Tr[[lock (0) S ]] =
wherep 0&&o q;]] = | gssert o.shared:
assert o U tid.A; assert tid.lockstack != empty O
assert | o.shared; o tid.lockstack.top();
tid.A[o] := false; tid.lockStack.push(o);
o.shared := true; foreach (p | tid.A[p]) havoc p.*;
assertp q; tid.A[o]:=true;
assumep 0&&o0 (; Tr[[S]] ;
tid.A[o]:= false;
tid.lockstack.pop(0);

N
N



Example: Deadlock Avoidance (contd.)

Dining Philosophers

f1 = new Fork(); share f1;
f2 = new Fork(); share f2 where f1  2;
f3 = new Fork(); share f3 where f2 {3 ;

P1 = new Thread( delegate() {
lock (f2) { lock (f1) { /*eat*/ }}});
P1.Start();

P2 = new Thread( delegate() {
lock (f3) { lock (f2) {/*eat*/ }}}); P2.Start();

P3 = new Thread( delegate() {
lock (f3) { lock (f1) {/*eat*/ }}}); P3.Start();

23




Conclusion

Clients can reason entirely as if world was single-
threaded for non-shared objects

Supports caller-side locking and callee-side locking

Deadlocks are prevented by partially ordering shared
objects

24



The End

(for now)

Thank you!

http://research.micsoft.com/specsharp
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Review: Pure Methods and Model Fields

Data abstraction is crucial to express functional correctness
properties

* Verification methodology for model fields
— Model fields are reduced to ordinary fields with automatic updates

* Verification challenges for model fields and pure methods
— Consistency
— Weak purity
— Heap dependence (and frame properties)



Multi-threading

* Data race prevention
* Invariants and ownership trees

* Deadlock prevention



Multithreading

Multiple threads running in class Counter {
parallel, reading and writing | int dangerous;
shared data void Inc() {

int tmp = dangerous;

dangerous =tmp + 1; }

A data race occurs when a
shared variable is written by

one thread and concurrently | counter ct = new Counter();

—

read or written by another new Thread(ct.Inc).Start();
thread new Thread(ct.Inc).Start();

/I What is the value of
How to guarantee that there /I ct.dangerous after both

are no data races? /I threads have terminated?




Mutexes: Avoiding Races

Mutual exclusion for shared objects is provided via locks

Locks can be obtained using a lock block. A thread may
enter a lock (0) block only if no other thread is executing
inside a lock (0) block; else, the thread waits

When a thread holds a lock on object o, C#/Java
— do prevent other threads from locking o but
— do not prevent other threads from accessing o’s fields



Program Method for Avoiding Races

Our program rules enforce that
a thread t can only access a field of object o if o is either
thread local or t has locked o

We model accessibility using access sets:

* Athread’s access set consists of all objects it has created
but not shared yet or whose lock it holds.

* Threads are only allowed to access fields of objects in their
corresponding access set

Our program rules prevent data races by ensuring that access
sets of different threads never intersect. 6



Annotations Needed to Avoid Races

* Threads have access sets

— t.A'is a new ghost field in each thread t describing the set of
accessible objects

* Objects can be shared
— o.shared is a new boolean ghost field in each object o
— share(0) is a new operation that shares an unshared o
* Fields can be declared to be shared
— Shared fields can only be assigned shared objects.



Object Life Cycle

acquire

new T()

release
unshared



Verification via Access Sets

Tr[[o = new C();]] = ...
o.shared:= false;
tid.Af[o]:= true

Trl[x=0.f;]] = ...
assert tid.Alo];
X :=o0.f;

Trllof=x]] = ...
assert tid.A[o];
if (f is declared shared)
assert x.shared;
o.f :=x;

Tr[[share(o)]] = ...
assert tid.A[o];
assert ! o.shared;
o.shared :=true;
tid.A[o] :=false;

Tr[[lock (0) S 11 = ...
assert ! tid.Afo];
assert o.shared;
havoc o0.%;
tid.A[o]:=true;

Tr([SII;
tid.A[o]:= false




A Note on havoc in the Lock Rule

When a thread (re) acquires o, o might have been changed by
another thread.
int x;
lock (o) {
x=o0.;
}
lock (o) {
assert x == o.f; // fails

}

So we have to “forget all knowledge about o’s fields”. We do so by
assigning an arbitrary value to all of o’s field, expressed as
havoc 0.*
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Example for Data Race Freedom

Counter ct = new Counter();

share(ct);

new Thread(delegate () { lock (ct) ct.Inc(); }).Start();
new Thread(delegate () { lock (ct) ct.Inc(); }).Start();
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Example for Data Race Freedom

/I thread t0
Counter ct = new Counter();
share(ct);
Session s1 =new Session(ct,1);
Session s2 =new Session(ct,2);

/I transfers s1 to t1
t1 = new Thread(s1.Run);

/I transfers s2 to t2
t2 = new Thread(s2.Run);

t1.Start();
t2.Start();

class Session {
shared Counter ct ;
intid;

Session(Counter ct , int id)
requires ct.shared;
ensures tid.Afthis] A ! this.shared;
{ this.ct=ct; this.id=id; }

void Run()
requires tid.A[this];
{for(; ;)
lock (this.ct)
this.ct.Inc();

12




Soundness

Theorem

O Othreads t1,t2 ::t1#t2 0 t1.An t2A=0
O O object o, thread t :: o.shared && o € t.A [0 t holds 0’s lock

* Proof sketch for Theorem
- new
— share (0)
— Entry into lock (0)
— Exit from lock (o)

Corollary

’° Valid programs don’t have data races
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Multi-threading

* Data race prevention
* Invariants and ownership trees

* Deadlock prevention

14



Invariants and Concurrency

Invariants, whether over a single object or over an ownership
tree, can be protected via a single lock (coarse grained
locking)

For sharing and locking
* require an object o to be valid when o becomes free
* ensures O’s invariant on entry to its locked state

For owned objects
* require that commited objects are unaccessable, but
— unpack(o) adds o’s owned objects to the thread’s access set

— pack(o) deletes o’'s owned objects from the thread’s access set
15



Verifying Multi-threaded Pack/Unpack

Tr[[unpack o;]] =
assert tid.A[o];
assert 0.inv;
foreach (c | c.owner = 0)
{tid.A[c] := true; }
o.inv := false;

Tr[[ pack 0;]] =
assert tid.A[o];
assert ! o.inv;

assert [c: c.owner =0 [J
tid.Alc] A c.inv;

foreach (c | c.owner = 0)
{tid.A[c] := false; }

assert Inv(0);

o.inv := true;
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Ownership: Verifying Lock Blocks

Finally, when locking we also have to “forget the knowledge

about” owned objects

Tr[[lock (0) S; 1] =
assert o.shared;
assert ! tid.A[o];
foreach (p | !tid.A[p]) havoc p.*;
tid.A[o]:=true;
Tr{[S]] ;
tid.A[o]:= false;
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Outline of the talk

* Data race prevention
* Invariants and ownership trees
* Deadlock prevention
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Multi-threading

* Data race prevention
* Invariants and ownership trees

* Deadlock prevention
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Concurrency: Deadlocks

A deadlock occurs when a set of

threads each wait for a mutex
(i.e shared object) that
another thread holds

Methodology:

partial order over all shared
objects

in each thread, acquire shared
objects in descending order

Dining Philosophers

Fork 1 ork 3

Fork 2
®1 has F1, waits for F2

®2 has F2, waits for F3
®3 has F3, waits for F1

20



Annotations Needed to Avoid Deadlocks

We construct a partial order on shared objects, denoted by

* When o is shared, we add edges to the partial order as
specified in the share command’s where clause.

(Specified lower bounds have to be less than specified
upper bounds)

* Each thread has a new ghost field /ockstack, holding the
set of acquired locks

21



Verification via Lock Ordering and
Lockstacks

Tr[[share o

where p
assert o O tid.A;
assert ! o.shared;
tid.A[o] := false;
o.shared := true;

assert p
assume p

q;

0&&o

0&&o

q;

gl =

Tr[[lock (0) S 1] =
assert o.shared;

assert tid.lockstack '= empty O
o tid.lockstack.top();

tid.lockStack.push(o);

foreach (p | 'tid.A[p]) havoc p.*;
tid.A[o]:=true;

Tr{[S]] ;

tid.A[o]:= false;
tid.lockstack.pop(0);

N
N



Example: Deadlock Avoidance (contd.)

Dining Philosophers

f1 = new Fork(); share f1;
f2 = new Fork(); share f2 where f1  12;
f3 = new Fork(); share f3 where 2 {3 ;

P1 = new Thread( delegate() {
lock (f2) { lock (f1) { /*eat*/ }}});
P1.Start();
P2 = new Thread( delegate() {
lock (f3) { lock (f2) {/*eat*/ }}}); P2.Start();
P3 = new Thread( delegate() {
lock (f3) { lock (f1) {/*eat*/ }}}); P3.Start();
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Conclusion

Clients can reason entirely as if world was single-
threaded for non-shared objects

Supports caller-side locking and callee-side locking

Deadlocks are prevented by partially ordering shared
objects
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The End

(for now)

Thank you!

http://research.micsoft.com/specsharp
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