
1

Lecture 2

Towards a Verifying Compiler:
Logic of Object oriented Programs

Wolfram Schulte
Microsoft Research

Formal Methods 2006

Objects, references, heaps,
Subtyping and dynamic binding,

Pre- and postconditions, method framing

Joint work with Rustan Leino, Mike Barnett, Manuel Fähndrich, Herman Venter, Rob DeLine,
Wolfram Schulte (all MSR), and Peter Müller (ETH), Bart Jacobs (KU Leuven) and Bor-Yuh Evan
Chung (Berkley)

2

Review: Boogie PL

Source language
(eg. Spec#)

BoogiePL

Formulas

Translate source language features
using particular programming methodology

Translate Boogie PL code using
particular VC generation

Intermediate
language for
verification

3

Review Boogie PL

• What components does Boogie PL have, and what does it
not have?

• What is the purpose of assert, assume and havoc?

• What’s the meaning of a procedure and its modifies
clause?

• What do we need to translate an OO language into
Boogie PL?

4

Mapping Spec# to BoogiePL

• Axiomatizing Spec#’s class and field declarations
• The storage model
• Translating methods and code
• Method framing (simplified)
• Loop framing

5

Axiomatizing the Spec# Type System

On notation:

We use the following C# class
class C : object {

 object f = null;
 C(){}
 }

to describe the result of the axiomatization.

We use the function
Tr (anslate)

 to translate Spec# statements into BoogiePL

6

Axiomatizing the Spec# Type System

Introduce a typename for each Spec# type
 type C : name;

Assert subtyping relationship for program types
axiom C <: System.Object;

by using a predefined partial order operation <:

7

Axiomatizing C#’ Type Declarations

Introduce field names as constants
const C.f : name;

Assert field properties (kind, type etc).
axiom IsRefField(C.f, System.Object);

by using the appropriate functions
function IsRefField(field:name, type:name) returns bool

8

Storage Model

Use Boogie’s type ref to denote runtime object references

A Heap maps object references and field names to values
var Heap: [ref, name] any; // Heap : ref ×name →any

Allocatedness is represented as another field of the heap
const allocated: name;

Access to an instance field f declared in C is translated as
Tr[[x = o.f;]] =

Tr[[o.f = x;]] =

assert o ≠ null ; x := Heap[o, C.f]

assert o ≠ null ; Heap[o, C.f] := x

9

Allocation

Tr[[x = new T()]] =

{var o: ref;

assume o != null typeof(o) == T;∧

assume Heap[o, allocated] == false;

Heap[o, allocated] := true;

call T..ctor(o); }

10

Methods

Recall: Boogie PL

• has only procedures, no instance methods
→Add this as first parameter to generated proc

• is weakly typed (just int, bool, ref)
→Spec# types must be preserved via contracts

• has no idea of heap properties
→Allocatedness must be preserved via contracts

• has no inheritance
→Strengthening of postconditions must be implemented

via multiple procedures

11

Constructors and Non-Virtual Methods

Tr [[C() {}]] =
proc C..ctor(this: ref);

 requires this != null typeof(this) <: C;∧

 modifies Heap;

impl C..ctor(this: ref)

{ assume Heap[this, allocated] == true;

 //for constructors only
assume Heap[this, C.f] == null;

call System.Object..ctor(this);

 …

}

Preserve
 type information

Preserve
 initialization
 semantics

12

Virtual Methods: Example

class Cell{

 public int x;

 protected virtual void Set(int x)

 modifies this.*;

 ensures this.x == x;

 { this.x = x; }

 public void Inc(int x)

 modifies this.*;

 ensures this.x==old(this.x)+x;

 { this.Set(Get()+x); }

}

class BackupCell: Cell{
 int b;

 protected override void Set(int x)

ensures this.b == old(this.x);
 { this.b = this.x; base.Set(x); }

13

Behavioral Subtyping

Behavioral Subtyping should guarantee substitutability
• Wherever an object of type T is expected an object of type

S, where S<:T, should do without changing the program’s
behavior expressed in wp

Sufficient conditions: Let M1 be a virtual method and M2 be
its overridden method, then

• M2 can weaken M1’s precondition
• M2 can strengthen M1’s postcondition

14

Virtual Methods

Translate each method m declared in C into a

proc m.C (this, …) requires this != null typeof(this) <: C; ∧
…

The precondition of the overriding method is inherited from the
overridden method; additional postconditions are conjoined

Translate calls of the form o.m() to the method on o’s most
specific static type

15

Method Framing

• For sound verification we assume that every method
modifies the heap

• Modifies clauses in Spec# express which locations
(evaluated in the method’s prestate) a method is allowed to
modify

• Modifies clauses for an object o or array a have the form:
– o.f allows modification of o’s f field
– o.* allows modification of all of o’s fields
– a[k] allows modification of a’s array location k
– a[*] allows modification of all of a’s array locations

16

Method Framing

Let W denote all locations a method is allowed to modify
• The Boogie PL post condition for a Spec# modifies clause

Tr [[W]] =
 (∀o: ref, f: name :: old(Heap[o,allocated])
 ⇒ (o,f) ∈old(W) ∨ old(Heap[o,f]) = Heap[o,f])

17

Virtual Methods: Example Translation

Spec#
protected virtual void Set(int x)

 modifies this.*;

Boogie
proc Cell.Set(this : Cell, x : int)
 requires this != null typeof(this) <: Cell;∧
 modifies Heap;
 ensures (o:ref, ∀ f: name :: old(Heap[o,allocated])

 ⇒ o = this ∨ old(Heap[o,f]) = Heap[o,f]);

18

Loop Framing

• Loops might change the heap. Let W denote the set of
locations potentially changed by the loop

• For sound verification we havoc the heap. We add as loop
invariant the assertion that fields not written to don’t change

 Tr [[W]] =
(∀o : ref, f: name :: Heapentry[o,allocated]
 ⇒ f ∈ W ∨ Heapentry[o,f] = Heapcurrent[o,f])

where Heapentry/current denote the entry/current incarnations of the
Heap variable in the loop

19

Summary

Verifying object-oriented programs requires to
• axiomatize the declaration environment

– to keep enough information around for verification

• decide on a storage model
– to model updates and framing

• translate the method bodies, paying particular attention to
– partiality of operations
– virtual dispatch
– method and loop frames

