Sound Object Model Refactorings

Rohit Gheyi* and Paulo Borba

Informatics Center
Federal University of Pernambuco
{rg,phmb}@cin.ufpe.br

Abstract. Refactorings are usually proposed in an ad hoc way because
it is hard to guarantee their soundness with respect to a formal semantics.
Usually, even using refactoring tools, developers have to rely on compi-
lation and tests in order to improve their confidence that semantics is
preserved, which may not be satisfactory to critical software develop-
ment. We propose a set of semantics-preserving transformations based
on a refinement theory that we propose for Alloy. This set of transfor-
mations is shown to be relatively complete in the sense that it can derive
a representative set of model transformations, and proven sound with
respect to a formal semantics for Alloy in a theorem prover. Moreover,
we show how they can be composed to derive refactorings and opti-
mizations. They are a powerful tool for reasoning about object model
transformations, and can be used to improve refactoring tools.

1 Introduction

Evolution is a demanding software development activity, as the originally defined
structure usually does not accommodate adaptations, demanding new ways to
reorganize software. Modern development practices, such as program refactor-
ing [1], improve programs while maintaining their original behavior, in order, for
instance, to prepare software for change. An object model refactoring is a trans-
formation that improves design structure preserving semantics. They might bring
similar benefits but with a greater impact on cost and productivity, since they
are used in earlier stages of the software development process.

In current practice, in spite of refactoring tool support, programmers still
rely on successive compilation and test suite executions in order to improve
confidence that the behavior is preserved [1]. However, a test suite is able only
to uncover errors, not to prove their absence. Moreover, modifying the struc-
ture of a program may imply updating the unit tests. Therefore, besides being a
time-consuming activity, relying on a test suite is not a good way to improve con-
fidence that the behavior is preserved. In case of structural model refactorings,
most proposed transformations rely on informal argumentation. It is difficult to
prove that refactorings are sound with respect to a formal semantics. Defining
all enabling conditions required for a transformation to be semantics-preserving
is not an easy task. Even a number of object model transformations proposed

* We would like to thank all anonymous referees.



in the literature, which are intended to be semantics-preserving, may lead to
models with type errors or subtle semantic changes in some situations. More-
over, there is no comprehensive set of structural model transformations to help
designers to improve their models.

Related work [2,3,4,5,6] has been carried out on semantics-preserving trans-
formations for UML-like class diagrams. These approaches do not state in which
conditions a transformation can be applied. Therefore, some transformations
may not preserve semantics in some situations. These transformations do not
preserve semantics because some of them use a semi-formal semantics. Others
partially define semantics but do not verify soundness of transformations, or do
not consider constraints. Although they propose transformations relating equiv-
alent UML-like class diagrams models, some of them do not state when two
models are equivalent.

2 Goal Statement

In this research, we propose a comprehensive set of semantics-preserving trans-
formations for Alloy [7], which is a formal object-oriented modeling language. By
composing them, we derived some model refactorings. Moreover, we show that
this set of transformations is relatively complete, in the sense that it is sufficient
to reduce an arbitrary Alloy model to an equivalent one in a normal form. We
follow a similar approach used for imperative and object-oriented languages [8,9].
So, we can derive a representative set of transformations by composing them.

Our transformations relate equivalent models based on an abstract equiv-
alence notion that we propose for Alloy [10], and encode it in the Prototype
Verification System (PVS) [11], which encompasses a formal specification lan-
guage and a theorem prover. Moreover, we prove some properties of this notion
in PVS, such as compositionality. Our transformations are proven sound in PVS
with respect to a formal semantics for Alloy encoded in PVS and the equivalence
notion proposed [12].

3 Approach and Evaluation

We propose a set of transformations that not only preserves semantics, but also
that it does not introduce any type errors or break the well-formedness properties
of Alloy models. Consequently, we extend a previously defined semantics for
Alloy and specify a type system for Alloy, and encode them in PVS.

Since we are proposing transformations that relate equivalent object mod-
els, we need to use an equivalence notion stating when two object models are
equivalent. The common equivalence notion states that two object models are
equivalent if they have the same semantics. This notion is useful, but not flexible
enough to compare equivalent models with auxiliary elements [10]. Therefore,
we propose and encode in PVS a more flexible and abstract equivalence notion
for object models.



We used these transformations to refactor a real case study. We have applied
them to refactor a graphical framework (Swing and AWT) of Java. Besides
being useful for clarifying Alloy’s semantics and a powerful tool for reasoning
about Alloy models, our model transformations can be used to improve the
analysis performance of a tool. Moreover, these model transformations can be
used to derive model refactorings, such as Extract Interface and Pull Up Field
refactorings. One of the most difficult tasks for proposing refactorings is to define
required enabling conditions. Proposing and proving refactorings in PVS help
identify when transformations do not introduce type errors or inconsistencies.
Even popular program refactoring tools, such as Eclipse [13], may introduce
some simple errors, such as making a program ill-typed or behaviorally different.
In case of model refactoring, this scenario is even worse since there are a few
model transformations proposed in the literature, most of them in an ad hoc
way. Consequently, following our approach for proposing refactorings can help
improve tool support, adding reliability to software refactoring.

So far, we have proposed an equivalence notion and proved some related
properties, a formal semantics and type system for Alloy in PVS [10]. Moreover,
we have proposed 50 primitive semantics-preserving transformations for Alloy.
As a future work, we intend to derive more coarse-grained transformations, such
as refactorings. We have shown that our set of transformations is relatively
complete. As a future work, we will investigate whether we can find a stronger
completeness notion. Finally, we aim at formally relating our refinement notion
to the traditional notion of refinement.

References

1. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(1999)
2. Bergstein, P.: Object-preserving class transformations. (In: OOPSLA’91)
3. Evans, A.: Reasoning with UML class diagrams. In: 2nd IEEE Workshop on
Industrial Strength Formal Specification Techniques. (1998) 102-113
4. Markovié, S., Baar, T.: Refactoring OCL annotated UML class diagrams. In: 8th
MoDELS. Volume 3713 of LNCS. (2005) 280-294
5. Sunyé, G., Pollet, D., Traon, Y., Jézéquel, J.M.: Refactoring UML models. In: 4th
Conference on UML. Volume 2185 of LNCS., Springer-Verlag (2001) 134-148
6. Lano, K., Bicarregui, J.: Semantics and transformations for UML models. In: 1st
Conference on UML. (1998) 97-106
7. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT press
(2006)
8. Hoare, T., et al.: Laws of programming. CACM 30 (1987) 672-686
9. Borba, P., Sampaio, A., Cavalcanti, A., Cornélio, M.: Algebraic Reasoning for
Object-Oriented Programming. Science of Comp. Programming 52 (2004) 53-100
10. Gheyi, R., Massoni, T., Borba, P.. An Abstract Equivalence Notion for Object
Models. Electronic Notes in Theoretical Computer Science 130 (2005) 3-21
11. Owre, S., et al.: PVS Language Reference. At http://pvs.csl.sri.com (2006)
12. Gheyi, R., Massoni, T., Borba, P.: A Rigorous Approach for Proving Model Refac-
torings. (In: 20th IEEE/ACM Conference on ASE)
13. Eclipse.org: Eclipse project. At http://www.eclipse.org (2006)


http://twiki.cin.ufpe.br/twiki/pub/SPG/GroupPublications/entcs2005.pdf
http://twiki.cin.ufpe.br/twiki/pub/SPG/GroupPublications/entcs2005.pdf
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf
http://pvs.csl.sri.com
http://twiki.cin.ufpe.br/twiki/pub/SPG/GroupPublications/ase2005-full.pdf
http://twiki.cin.ufpe.br/twiki/pub/SPG/GroupPublications/ase2005-full.pdf
http://www.eclipse.org

	Sound Object Model Refactorings
	Rohit Gheyi and Paulo Borba

