
Hunting Obfuscated Malwares
by Abstract Interpretation

MILA DALLA PREDA

Dipartimento di Informatica, University of Verona, Italy
dallapre@sci.univr.it

The Problem. A malware is a program with a malicious behaviour, that is designed to
replicate with no user consent and to damage software and/or data on infected machines.
Malwares are generally classified according to their goals and propagation methods into
viruses, worms, backdoors, Trojans, etc. A malware detector is a system that attempts
to verify whether a program presents a malicious behaviour or not. The design of effi-
cient malware detectors is crucial for preventing serious damages caused by malware
infection. Current malware detectors (e.g. commercial virus scanners) in general rely
on static signature matching and, more recently, on dynamic analyses [9]. The dynamic
approach executes the potentially infected program in a controlled environment (sand-
box) thus performing a run-time verification of malicious behaviours. However, smart
malwares may foil a dynamic analysis by modifying their behaviour when executed in a
sandbox. Static signature matching classifies a program P as infected by a malware M
when an instruction sequence of P matches the characteristic instruction sequence of
M . Malware writers frequently use obfuscation to prevent signature matching detection.
Code obfuscation [3] consists in syntactically transforming a program while maintain-
ing its functional behaviour. Recent results [1] show that static signature matching can
be defeated using simple obfuscating techniques, including code transposition, sub-
stitution of equivalent instruction sequences, opaque predicate insertion and variable
renaming. Thus, the signature matching methodology is not resilient to slight modifica-
tions of malwares and needs a frequently updated database of malware signatures (one
for each version of the malware). The reason way obfuscation can easily foil signature
matching lies in the syntactic nature of this approach that ignores program functional-
ity. Program behaviours are precisely described by formal semantics, so that facing the
malware detection problem from a semantic point of view could lead to a more resilient
detection system. Preliminary work [2] on semantics-aware malware detectors confirms
the potential benefits of a semantic approach. Our goal is to provide a semantic char-
acterization of malware infection to be used as a basis for designing malware detectors
that are resilient to most commonly used obfuscating techniques.

Results. A first necessary step towards designing a semantic malware detector consists
in providing a rigorous theoretical framework where code obfuscation can be viewed
as a semantic transformation. This is a challenging problem per se, since the major
drawback of most code obfuscation techniques lies in the lack of an accurate theoreti-
cal background; that limits formal reasoning on obfuscation. Abstract interpretation [4]
turns out to be a suitable framework for formalizing a general semantics-based theory
for code obfuscation. In [6] we introduce a novel definition of code obfuscation, based



on program semantics, that generalizes the standard notion of obfuscation and shows
that every program transformation may potentially act as code obfuscation. We focus on
code obfuscation by opaque predicate insertions and in this case our semantic approach
is able to drive a systematic design of suitable de-obfuscating techniques [5]. More-
over, experimental results practically show a significant performance improvement of
such de-obfuscating techniques [7]. Our study on semantic code obfuscation shows that
an obfuscation O preserves program semantics up to some abstraction α O. Thus the
semantics of a malware M and of its obfuscation O(M) are αO-equivalent, namely
αO(S[[M ]]) = αO(S[[O(M)]]), where S[[·]] denotes program trace semantics. Given a
suitable abstraction αO, malware infection of a program P can be semantically charac-
terized by the following relation: αO(S[[M ]]) ⊆ αO(S[[P ]]). In fact, P is infected by a
malware M when P presents the malicious behaviour M , namely when the (abstract)
semantics of P contains the (abstract) semantics of M . Dealing with an abstraction
of the semantics allows us to handle possibly obfuscated malwares. The idea is that
αO abstracts from details that are not relevant for identifying the malware, that is, α O

looses those aspects of the malware behaviour that may change in different obfuscated
versions of the malware (e.g. names of variables). On the other hand, the abstraction α O

has to be precise enough to capture the essence of the malware behaviour. Clearly, the
key point for designing an efficient semantic malware detector consists in determining a
suitable abstraction αO. In fact, αO has to be abstract enough to detect obfuscated ver-
sions of the same malware, in order to avoid false negatives, and precise enough to avoid
false positives. The abstraction αO plays here the role of a semantic normal form with
respect to obfuscation O. In fact, given an obfuscating transformation O, our semantic
methodology for malware detection first reduces the semantics of the malware M and
of the program P to the normal form with respect to O, i.e. performs the abstraction α O,
and then checks if the normal forms match. In general, a malware composes different
obfuscating transformations to prevent detection. It is therefore important to investigate
how semantic detection works with more than one obfuscation method. We observe that
the precision degree of the semantic malware detector is preserved by composition. Let
us consider two obfuscations O1 and O2 and assume that the corresponding semantic
abstractions αO1 and αO2 avoid both false positives and negatives. It turns out that, if
the obfuscations O1 and O2 are independent, namely if they commute respectively with
the abstractions αO2 and αO1 , the composed abstraction αO1 ◦ αO2 prevents both false
positives and negatives when the malware obfuscates itself through the composition
O2 ◦O1. This is an important observation because it allows a modular approach to deal
with real-life complex obfuscating transformations, that can be viewed as composition
of elementary obfuscations. We are able to provide a semantic abstraction that avoids
both false positives and negatives for several commonly used obfuscating transforma-
tions, including variable renaming, substitution of equivalent sequences of instructions,
code transposition, opaque predicate and semantic nop insertion. Moreover, every pair
of these transformations satisfies the independency condition, that turns out to be non-
restrictive in real-life obfuscators.

Open Issues. Given an obfuscating transformation O, we assumed that the abstraction
αO is provided by the malware detector designer. We are currently investigating how to
design a systematic (ideally automatic) methodology for deriving a suitable abstraction



αO that leads to an efficient semantic malware detector (i.e., no false negatives and posi-
tives). We observed that if the abstraction αO is preserved by the obfuscation O, namely
αO(S[[P ]]) = αO(S[[O(P )]]), then there are no false negatives. This is an interesting re-
sult because in [5] we provide a systematic methodology that, given an obfuscation O,
derives the most concrete property preserved by O. However, preservation is not enough
to eliminate false positives. Hence, an interesting research task consists in characteriz-
ing the set of semantic abstractions that prevents false positives. One further step would
be to investigate whether and how model checking techniques can be applied to detect
malware. Some works along this line already exist [8]. Observe that the abstraction α O,
that characterizes the semantic normal form with respect to the obfuscation O, actually
defines a set of program traces that are equivalent up to O. In model checking, sets of
program traces are represented by formulae of some linear/branching temporal logic.
Hence, we aim at defining a temporal logic whose formulae are able to express normal
forms of obfuscations together with operators for composing them. This would allow to
use standard model checking algorithms to detect malwares in programs. This could be
a possible direction to follow in order to develop a practical tool for malware detection
based on our semantic model. We expect this semantics-based tool to be significantly
more precise than existing virus scanners.

Acknowledgements. This research has been partly conducted during a visit to the Department
of Computer Science, The University of Arizona, joining the group of prof. Saumya Debray and
has been partly supported by the Italian projects InterAbstract, AIDA and FIRB.

References

1. M. Christodorescu and S. Jha. Testing malware detectors. In Proc. Internat. Symposium on
Software Testing and Analysis. (ISSTA’04), 2004, pp. 33-44, ACM Press.

2. M. Christodorescu, S. Jha, S. A. Seshia, D. Song and R. E. Bryant. Semantics-aware malware
detection. In Proc. Symposium on Security and Privacy, 2005, pp. 32-46, IEEE Press.

3. C. Collberg, C. Thomborson and D. Low. A taxonomy of obfuscating transformations. Tech-
nical Report #148, Dept. of Computer Science, The Univ. of Auckland, 1997.

4. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proc. Symp. on Principles of
Programming Languages (POPL’77). 1977, pp. 238-252, ACM Press.

5. M. Dalla Preda and R. Giacobazzi. Control code obfuscation by abstract interpretation.
In Proc. Internat. Conf. on Software Engineering and Formal Methods (SEFM’05). 2005,
pp. 301-310.

6. M. Dalla Preda and R. Giacobazzi. Semantic-based code obfuscation by abstract inter-
pretation. In Proc. 32nd Internat. Colloquium on Automata, Languages and Programming
(ICALP’05). 2005, vol. 3580 of LNCS, pp. 1325-1336.

7. M.Dalla Preda, M. Madou, K. De Bosschere and R. Giacobazzi. Opaque predicate detection
by abstract interpretation In Proc. Internat. Conf on Algebraic Methodology and Software
Technology (AMAST’06) to appear.

8. J. Kinder, S. Katzenbeisser, C. Schallhart and H. Veith. Detecting malicious code by model
checking. In Proc. Conf. on Detection of Intrusions Malware & Vulnerability Assessment
(DIMVA’05) 2005, vol. 3548 of LNCS, pp. 174-187.

9. P. Szor. The art of Computer Virus Research and Defence. Addison Wesley, 2005.


