
A continuous-time approach to modelling and validating
Simulink Models

Chunqing Chen ?

School of Computing
National University of Singapore

{chenchun}@comp.nus.edu.sg

Abstract. Our research focuses on applying formal methods to elevate the de-
sign quality of Simulink. As a modelling and simulation tool, Simulink is defi-
cient when coping with the increasing requirements of high-level assurance and
timing analysis. We propose a systematic approach to translate Simulink models
to Timed Interval Calculus (TIC), a continuous-time based formal language for
specifying and reasoning about real-time systems. The translation preserves the
functional and timing aspects of Simulink models. Our approach can increase the
design space by specifying timing related requirements, in particular safety and
liveness, exactly on the model after the translation. Using TIC reasoning rules,
we can formally validate that the design satisfies the requirements.

1 Introduction

Simulink is a graphical environment for modelling and simulating various systems.
It adopts the continuous-time semantics, and discrete-time models behave piecewise
constantly continuously. A Simulink model is constructed by connecting blocks with
wires. The simulation characterizes the system behavior for particular circumstances.

Despite the efficiency of simulation in system design, formal verification is foreseen
to complement the simulation to cope with the increasing requirements of high-level
assurance. Moreover, timing analysis becomes necessary, though Simulink is currently
difficult to specify and check timing constraints. We propose to apply a real-time formal
notation, Timed Interval Calculus (TIC) [6] to elevate the design quality of Simulink.

TIC is based on the set theory and reuses the Z mathematical and schema notations.
It utilizes continuous functions of time to model systems and contains a rich set of
reasoning rules for verification. The similar notations are Duration Calculus with its
extensions that describe system behavior without explicit references of absolute time
points, so they are inappropriate to represent constraints which restrict the values of
interval endpoints to specific intervals.

We aim at taking advantage of TIC to rigorously model and formally validate Simulink
models. The approach is based on the same angle chosen by TIC and Simulink where
they model systems in terms of continuous time. Due to the informal description of
Simulink library blocks, we focus on capturing the mathematical functions denoted by
the blocks (as their denotational semantics) in TIC. To ensure the consistency, we de-
velop a strategy to preserve the functional and timing aspects of Simulink models in

? Supervised by Professor DONG Jin Song



the translation. The approach can increase the design space by allowing timing related
requirements, especially safety and liveness, to be specified exactly on the model using
the translated TIC specifications. With all the information represented in TIC, we can
formally prove that the design meets the requirements by deduction. Optimizing the
automation in the translation and reasoning processes is one of the goals as well.

2 Approach and proposed solutions

The approach consists of three steps.
Defining TIC library: Simulink library blocks are templates to generate elemen-

tary blocks, the units of Simulink models, by the parameterization technique. Corre-
spondingly, we define a TIC library function to model a library block. The function
accepts a set of arguments and returns a TIC schema. In this way, the arguments relate
to the parameters of the library block, for example, the sample time, and the TIC schema
characterizes the generated elementary block by declaring the block’s inputs and out-
puts as total functions over time, as well as describing the block’s the mathematical
function in terms of time intervals. So far, we have rigorously modelled 25 often used
library blocks of 8 categories including continuous, discrete and discontinuous libraries.
We also identified that the library blocks of Ports and Subsystems category cannot be
expressed precisely in this step and they can be handled in the translation step.

Translating Simulink models: Simulink models are constructed in a hierarchical
way, so the translation is bottom up. Each elementary block is translated into a TIC
schema that represents the functional behavior of the block. The schema is generated by
applying a TIC library function to relevant block parameter values in Simulink. The pri-
mary parameter BlockType and the operator parameters compose the criteria to choose
the proper TIC library. Each wire is depicted by an equivalence relationship between
two continuous-time functions denoting the interface of blocks. The equivalence cap-
tures the Simulink communication feature, i.e. the destination block receiving the same
value produced by the source block simultaneously. Each (sub)system is expressed by
a TIC schema. The schema preserves the (sub)system structure by declaring its com-
ponents as state variables and describing the connection as a set of equations. To keep
the timing aspect, we developed an algorithm to derive sample time values of elemen-
tary blocks in particular models. Moreover, the conditionally executed subsystems in
Simulink are taken into account. Currently, we have implemented the translation strat-
egy using JAVA and successfully translated a continuous system and a hybrid system. 1

Validating Simulink models: Based on the generated TIC specifications, timing
related requirements can be formalized easily on the system or a component. We have
checked 9 requirements that cover safety and liveness of two non-trivial systems men-
tioned above. During the validation, we start with checking properties of subsystems,
and the proved properties can hence act as lemmas for more complicated analysis of
the higher-level system. In addition, the experiments show that open systems which are
not checkable in Simulink can be verified in our approach. Furthermore, using common
mathematical analysis, e.g. control theory, freely in TIC logic eases the proof.

1 Details are available at: www.comp.nus.edu.sg/∼chenchun/report



3 Related Work

Recently, there are a number of excellent works on translating Simulink into other for-
mal notations or programming languages. [2] and [1] translate Simulink models into
Z by specifying the functional behavior of one cycle. [4] extends the work by using
Circus to capture functionality and concurrency of Simulink models. Their approaches
aim to verify that Simulink models are correctly implemented in the programming lan-
guage, and that is different from ours. Our goal is to validate that Simulink models
satisfy different requirements. Moreover, they currently consider single-rate discrete
systems, and the timing information is missing. Similarly, [3] focuses on only dis-
crete Simulink blocks. [7] develops a tool CheckMate that can automatically verify
customized Simulink models against the requirements that are in the format of linear
inequality. It lacks of support to certain requirements that are represented by inequal-
ities containing variables on both sides, though such requirements can be handled in
ours. In short, our approach can cover a wider range of Simulink blocks, provide more
accurate specifications and support more complex requirements.

4 Conclusion and future work

This paper describes the first attempt to apply a continuous-time formal specification
language TIC to model and validate Simulink models. The approach is based on the
similarity of two notations where they model systems in terms of continuous time. With
the expressive power and the verification capability of TIC, we can increase the de-
sign space and elevate the confidence of Simulink models. The early experiment results
demonstrate the feasibility of the approach. We list some future work below.

Currently we are extending the TIC library to cope with more library blocks of dif-
ferent categories. Supporting Stateflow is one of our goals as well. We intend to improve
the algorithm to handle the sample time propagation in conditionally executed subsys-
tems and examine the translator with more complex systems. So far, the validation is
accomplished manually. We are currently studying the work [5] which formalized some
TIC reasoning rules in the generic theorem prover Isabelle. We expect to encode TIC
specifications into Isabelle/HOL logic for machine-assisted proof. Besides, we are in-
vestigating further heuristics to facilitate the validation.

References
1. M. M. Adams and P. B. Clayton. Clawz: Cost-effective formal verification for control systems.

In 7th International Conference on Formal Engineering Methods, pages 465–479, 2005.
2. R. D. Arthan, P. Caseley, C. O’Halloran, and A. Smith. ClawZ: Control laws in Z. In 3rd IEEE

International Conference on Formal Engineering Methods, pages 169–176. IEEE Press, 2000.
3. P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translating discrete-time

Simulink to Lustre. In EMSOFT’03, Philadelphia, PA, USA, 2003.
4. A. Cavalcanti, P. Clayton, and C. O’Halloran. Control law diagrams in Circus. In FM’05.
5. J. E. Dawson and R. Goré. Machine-checking the timed interval calculus. In AI’02.
6. C. J. Fidge, I. J. Hayes, A. P. Martin, and A. Wabenhorst. A set-theoretic model for real-time

specification and reasoning. In MPC’98, pages 188–206. Springer-Verlag, 1998.
7. S. Gupta, B. H. Krogh, and R. A. Rutenbar. Towards formal verification of analog designs. In

IEEE/ACM International Conference on Computer Aided Design, pages 210 – 217, 2004.


